Technical Report on the Sunnyside Project, Arizona, USA

Prepared for:

Regal Resources Inc.

203-2780 Granville Street Vancouver, BC Canada V6H 3J3

Prepared by:

APEX Geoscience Ltd.

200, 9797-45 Ave. Edmonton, AB Canada T6E 5V8

June 11, 2012

Andrew J. Turner, B.Sc., P.Geol.

Table of Contents

1.0		Sur	nmary		1
	1.1		Prope	rty, Agreements and Work Permits	3
	1.2	2	Geolo	gy and Mineralization	5
	1.3	3	Explor	ation	7
	1.4	ł	Recon	nmendations	10
2.0		Intro	oductio	n	12
3.0		Reli	ance o	on Other Experts	13
4.0		Pro	perty D	Description and Location	14
5.0		Acc	essibili	ty, Climate, Local Resources, Infrastructure and Physiography.	19
6.0		Hist	ory		20
7.0		Geo	ological	Setting And Mineralization	27
	7.1		Regio	nal Geology	27
	7.2	2	Prope	rty Geology	27
	7.3	3	Minera	alization	31
	7.4	ł	Sunny	side Exploration Targets	33
			7.4.1	Deep Porphyry Target	33
			7.4.2	Shallow Porphyry Target	35
			7.4.3	Chalcocite Enrichment Zone Targets	35
			7.4.4	Skarn Targets	35
8.0		Dep	osit Ty	/pes	37
9.0		Exp	loratio	า	39
	9.1		Regio	nal Geophysical Data	39
	9.2	2	Histori	cal Drill Core and Drill Data	40
	9.3	3	Autho	r's Property Visit and Samples	46
10.0)	Drill	ing		50
11.()	Sar	nple Pr	eparation, Analyses and Security	50
12.0)	Dat	a Verifi	cation	51
13.0)	Min	eral Pr	ocessing And Metallurgical Testing	53
14.()	Min	eral Re	esource Estimates	55
15.0)	Adja	acent F	Properties	55
16.0)	Oth	er Rele	evant Data And Information	59

Table of Contents (Cont'd)

17.0	Interpretations and Conclusions	61
18.0	Recommendations	67
19.0	References	69
	Certificate Of AuthorAt E	nd

List of Figures

Figure 1	Sunnyside Project Location Map	2
Figure 2	Sunnyside Project Access Map	15
Figure 3	Sunnyside Project Claim Map (as of June 1, 2012)	17
Figure 4	Historical Drillhole Locations	24
Figure 5	Porphyry Cu Deposits of the Southwest United States and Northwest Mexico (after Titley, 1982)	28
Figure 6	Regional Geology	29
Figure 7	Sunnyside Property Geology Map	30
Figure 8	Sunnyside Property Alteration Map	32
Figure 9	Porphyry Cu Deposit Model (Sillitoe, 2010)	34
Figure 10	Historical Drillholes Re-logged by Regal	41
Figure 11	Sunnyside Project Interpretive Cross-Section Location	42
Figure 12	Sunnyside Project Interpretive Cross-Section	43
Figure 13	Historical Drillholes Sampled by Regal	44
Figure 14	Rock Sample Location Map (Author's Property Visit)	47
Figure 15	Patagonia Area Projects	56
Figure 16a	Deep Porphyry Cu Deposit Analogs – Resolution Copper, AZ	60
Figure 16b	Deep Porphyry Cu Deposit Analogs – Pebble Project, AK	60
Figure 17	Sunnyside Property - Porphyry Cu Target Areas	64
Figure 18	Sunnyside Property – Chalcocite Enrichment Zone Target Areas	65
Figure 19	Sunnyside Property – Skarn Target Areas	66

List of Tables

Table 1	Sunnyside Chalcocite Target Confirmation Analyses	5
Table 2	Sunnyside Skarn Target Confirmation Analyses	5
Table 3a	Sunnyside Project Significant Historical Drillhole Intersections – Chalcocite Zones	5
Table 3b	Sunnyside Project Significant Historical Drillhole Intersection – Porphyry Targets	6
Table 3c	Sunnyside Project Significant Historical Drillhole Intersections – Skarn Zones	6
Table 4	Rock and Core Sample Descriptions – Author's Property Visit 48	8
Table 5	Summary Of Rock and Core Sample Analytical Results – Author's Property Visit	9
Table 6	Drill Core Examined By Author 49	9
Table 7	Summary Of Sequential Leach Testing Data For Chalcocite Target Samples	4

List of Appendices

Appendix 1	Detailed Property Information
Appendix 2	Detailed Core Sampling and Re-Sampling Data
	Appendix 2a – DDH BB-2, 3, 4 6, TM-13, 14 and TCH-2A Appendix 2b – DDH TCH-2 (part 1) Appendix 2b – DDH TCH-2 (part 2) Appendix 2d – DDH TCH-2A (part 2) Appendix 2e – DDH TM-13 (part 2)
Appendix 3	Analytical Certificates for the Author's Confirmation Samples
Appendix 4	Sequential Leach Data For Historical Drill Core
Appendix 5	Estimated Budget For Recommended Work At Sunnyside Project

1.0 <u>SUMMARY</u>

APEX Geoscience Ltd. ("APEX") was retained in April of 2012 by Regal Resources Inc. ("Regal") to provide geological services with respect to an evaluation of the Sunnyside Project ("the Project" or "the Property") and the production of a NI 43-101 compliant technical report for the Property. The following report provides a summary of the recent work completed by Regal at the Property comprising historical data compilation, resampling and re-logging of historical drill core, new sampling of previously un-sampled drill core followed by revised data compilation with target evaluation. This report is intended to provide a summary of the technical merits of Sunnyside Project as part of Regal's planned move to the TSX-V (Toronto Venture Exchange) from the CNSX (Canadian National Stock Exchange).

The Sunnyside Project is located approximately 25km northeast of the town of Nogales in southern Arizona, USA (Figure 1). The Property comprises approximately 298 contiguous unpatented lode mineral claims for an area of approximately 5,462.9 acres (2210.75 ha) and is being explored by Regal for its potential to host Porphyry Cu mineralization, along with other potential styles of mineralization related to the porphyry model.

This technical report was written in compliance with the standards set out in NI 43-101, along with its Companion Policy 43-101CP and Form 43-101F1 of the Canadian Securities Administration (CSA). This report includes a summary of available geological, geophysical and geochemical information for the Project. The author of this report, Mr. Andrew J. Turner, P.Geol., has conducted a review of the data discussed in this report and conducted a site visit between April 25 and 26, 2012. Mr. Turner is a "Qualified Person" as defined by National Instrument 43-101 and is fully independent of both the issuer (Regal) and the property vendor, MinQuest Inc. ("MinQuest"). During the course of the property visit, the author observed evidence of a significant hydrothermal system on the Property and the author is of the opinion that the Property warrants a significant exploration program going forward. Although historical drilling has been completed at the Property, there has been little activity over the last 20 years and what drilling has been conducted is relatively wide-spaced and no NI 43-101 resources have yet been defined at the Project. As a result, the Project is considered to be at a relatively early stage of exploration.



Figure 1

1.1 Property, Agreements and Work Permits

The Sunnyside Project comprises 298 unpatented lode mining claims covering a total of approximately 5,462.9 acres (2210.75 ha) within the Coronado National Forest that is administered by the United States Forest Service. The Project is located approximately 85km south of Tucson and 25km northeast of Nogales, Arizona (see Figure 1) in Santa Cruz County and is approximately centered on latitude 31°28' North and longitude 110°45' West and is located relative to UTM NAD 27 Zone 12 (Universal Transverse Mercator projection, Zone 12 of the 1927 North American Datum) between coordinates 521000m and 526000m East and 3483000m and 43477000m North.

The federal lode mining claims comprising the Sunnyside Property each measures a maximum of 1,500 feet x 600 feet and were located on the ground by hand-held GPS and have not been legally surveyed. Relative to the Public Lands Survey System (PLSS), the claims comprising the Property are located in portions of surveyed Sections 35 and 36, Township 22 South, Range 15 East, portions of surveyed sections 31 and 32, Township 22 south, Range 16 East, and in parts of unsurveyed Sections 5, 6, 7, 8, 17, and 18, Township 23 South, Range 16 East, and unsurveyed sections 1, 2, 12, 13, and 24, Township 23 south, Range 15 East, Salt and Gila River.

The BLM (Bureau of Land Management) database was queried by the author in order to confirm the status and ownership of the claims that comprise the Project. No significant issues were identified as all but 3 of the claims listed in Appendix I are registered with the BLM as "Active" with MinQuest as their "Claimant" (owner), with the exception of the "Bucket" claims that are owned by, and were acquired from, Russell and Brian Corn (see "Corn Agreement" below). The three (3) claims in question (VEN 112, 114 and 129) have recently been located on the ground by MinQuest and will be registered with the BLM shortly.

MinQuest Agreement

The Sunnyside Property comprised a number of unpatented lode mining claims that were owned by MinQuest and were originally acquired by Regal in 2010 through an "option agreement" dated January 10 of that year. Since that time, MinQuest has acquired additional claims that have been added to the Property according to the option agreement. Under the terms of this agreement, Regal has the right to earn a 100% interest in the Property, less a 3% NSR retained by MinQuest, by making cash payments totaling US\$810,000 and by completing work expenditures totaling US\$25.5 million over a ten year period with a US\$40,000 cash payment and a US\$500,000 work commitment in the first year. In addition, Regal would be required to issue 2,000,000 shares to MinQuest over the same ten year period (see Regal Press Release dated Feb

8, 2010).

In February of 2012 (see Regal Press Release dated Feb 3, 2012), Regal announced that it had reached an agreement with MinQuest, the property owner and vendor under the original "option agreement" described above, whereby the Sunnyside option agreement would be replaced by a "Purchase Agreement". The purchase agreement would, when fully executed and completed, replace the original option agreement and eliminate the cash, share and expenditure requirements therein. In return, Regal was required to pay MinQuest the sum of US\$800,000, of which US\$100,000 was to be paid as a non-refundable deposit within 3 business days of signing the Purchase Agreement, with the balance to be paid by the closing date of April 30, 2012. Furthermore, the purchase agreement would reduce the NSR retained by MinQuest from 3.0% to 1.5%.

Since the date of the original option agreement, the Property has evolved (grown) as a result of several staking events that were conducted by MinQuest on behalf of Regal. The claims that have been added to the Property have been staked within an "Area of Interest" (AOI), defined as 2 miles from the perimeter of the original Property boundary in the original option agreement. Any claims staked or acquired within the AOI are automatically added to the Property, which in turn redefines the AOI with respect to future staking and/or property acquisitions by both parties. As a result, Regal controls all of the claims listed in Appendix 1.

On April 30, 2012, and again on May 23, 2012, Regal and MinQuest amended the terms of the purchase agreement to modify the non-refundable deposit and the closing date of the agreement. As of the date of this report, a total of US\$500,000 has been paid to MinQuest by Regal as a non-refundable deposit and a balance of \$300,000 remains to be paid as of the amended closing date of June 30, 2012. As a result, the purchase of the Sunnyside Property remains incomplete but Regal continues to control the Property under the terms of the original "option agreement".

Corn Agreement

A group of 6 mineral claims (Buket 1-4 and 7-8) cover a central portion of the Sunnyside Property in the vicinity of the historical Sunnyside Mine. These claims predate MinQuest's claims in the same area. As a result, MinQuest entered into an agreement with respect to the acquisition of these claims with their owners, Russell and Brian Corn ("the Corns"), on December 5, 2006, which was subsequently amended on October 19, 2009. Under the terms of the amended agreement, MinQuest has been granted the option to earn a 100% interest in the 6 Buket claims, less a 3% NSR retained by the Corns, by making payments totaling US\$415,000 over a 9 year period, US\$45,000 of which has been paid and a further US\$20,000 is due by December 5, 2012.

Permitting

The author is not aware of any environmental issues that would prevent Regal from exploring and potentially developing the Sunnyside Property.

Exploration activities at Sunnyside will be conducted under a Plan of Operations (POO) with the U.S. Forest Service (USFS), which owns all surface rights at the Property. Access to the project area and claim block is via public roads and USFS roads. Once the permit is issued, a suitable bond is posted as determined by the USFS and defined disturbances are allowed during the life of the permit. Currently, Regal has submitted a POO for further drilling at the Property and the permit is being processed by the USFS. Approval is anticipated in time for a 2012 work program.

1.2 Geology And Mineralization

Regional Geology

The Sunnyside Project is situated in a broad northwest trending corridor of porphyry copper deposits that straddles the U.S. – Mexico border. This corridor is defined by many deposits from Groupo Mexico's La Caridad mine located in central Sonora, Mexico, through to Mercator Mineral's Mineral Park mine located in northwestern Arizona.

Geographically (and geologically), the Sunnyside Project is located in southern Arizona within the Basin and Range province that covers most of the southwest United States and northwestern Mexico. The Basin and Range province is characterized by linear mountain chains separated by broad flat valleys that have resulted from tectonic extension that began some 17 million years ago in the Miocene.

The Project is located in the Patagonia Range of mountains approximately 25km northeast of Nogales, AZ. The range is cored by a Laramide, multi-phase intrusive complex comprising quartz monzonite to granodiorite and lesser quartz-feldspar porphyry. Radiometric age dates completed by the USGS and others (Graybeal, 2007) suggest the emplacement of the intrusive occurred between 74 and 58 Ma. As is typical of the Basin and Range region, where normal faulting often results in the juxtaposition of differently aged rocks, there is a fault zone along the Patagonia Range that causes Proterozoic crystalline rocks to crop out along the western range front whereas the eastern part of the range exposes complexly faulted Paleozoic to Mesozoic sedimentary and volcanic rocks. The Laramide intrusions fill the divide between the Precambrian and Paleozoic rocks. Younger Cenozoic-age volcanics were deposited over the northern portion of the range and are likely related to the extension that resulted in the development of the Basin and Range physiography.

Property Geology

As described above, the oldest rocks in the area occur along the western edge of the property. These rocks include a package of Proterozoic crystalline rocks described as meta-intrusive to meta-sediments. Along the eastern border of the project area Cretaceous sediments and volcanics overlay Paleozoic limestone and shale. Drilling has indicated apparently complex folding and faulting within the Paleozoic and Cretaceous rocks that is likely related to Laramide tectonics.

The central portion of the project area is composed of multiple phases of Laramide-age intrusive. The intrusive is composed of granodiorite to quartz monzonite with several quartz-feldspar-porphyry (QFP) intrusions. The Laramide intrusions now occupy a significant structural zone between the Precambrian rocks on the west and the Paleozoic-Cenozoic rocks on the east.

Covering the intrusive to the south, north and east are wide spread Tertiary volcanic and volcanoclastic material described as a lapilli tuff. This material is believed to be contemporaneous with the intrusive activity and derived from the same material. Much of the rock is highly altered with textures nearly completely replaced by pyrophyllite and silica where it overlies the mineralized intrusive at depth. The lapilli tuff was formed concurrent with the Sunnyside intrusive event. This event formed a circular feature approximately one mile in diameter and further described as a diatreme. The lapilli tuff and associated maar deposits filled the diatreme and breached the northeastern diatreme boundary. The lapilli tuff is believed to be derived from numerous cycles of pyroclastic eruptions and attendant intrusions.

Mineralization

During the property visit conducted by the author, it was apparent that a significant hydrothermal system is exposed at surface at the Sunnyside Property. The Sunnyside Project exhibits a very complex pattern of intrusive rocks that represent multiple phases of intrusive activity. Along with several of these phases of intrusion have come different phases of alteration and/or mineralization. However, the most intense alteration observed at surface appears to be focused around quartz-feldspar porphyry (QFP) intrusions. The QFP bodies appear to have been instrumental in the formation of an approximate 1.5km diameter diatreme overlying the deep porphyry copper system. The diatreme is composed of milled rock that has been described as lapilli tuff. Within the boundary of the diatreme several QFP outcrops present themselves as extrusive flow domes. The lapilli tuff and associated maar are extensively altered to an advanced argillic assemblage containing enargite, covellite and chalcocite. From historical drilling, the advanced argillic alteration grades downward into phyllic and then potassic alteration assemblages containing chalcopyrite and molybdenite. An alteration map of

the property was compiled by Graybeal (1975) from several historical exploration programs.

The mineralization occurring within the project boundaries has been explored by various companies (Asarco, Kerr McGee, Anaconda, etc.) and has been studied by the U.S. Geological Survey (Vickre, *et al.* 2009 and Graybeal and Vikre, 2010) sporadically over the last forty years. The multi-phase intrusive core of the Patagonia Range in the area of the Property appears to have developed adjacent to/along a long-lived fault zone (Guajalote Fault). Vickre (2009) reports that at least six intrusive events occurred within the Patagonia Mountains over a period of 16 million years. The QFP stocks of Sunnyside intruded between 61 and 58 Ma (Graybeal, 2007, Vickre etal, 2009). Individual alteration areas overlap. All of the historical work has identified alteration and mineralization at Sunnyside that is consistent with the classic vertically and concentrically zoned porphyry copper system.

As a result of Regal's recent work to compile and re-evaluate all of the historical work completed at the Property, a number of discreet targets have been identified. The primary focus is obviously on the identification of porphyry copper (+/- molybdenum) mineralization. The main porphyry target comprises the deep porphyry system identified in historical drilling. However, recent mapping and analysis of new data generated from the examination of the historical drill core has identified a potential for identifying porphyry copper mineralization closer to surface in the vicinity (and likely west of) drillhole TR-11. In addition to the main porphyry targets, there is a potential for identifying significant copper mineralization in chalcocite enrichment zones located relatively near surface, which may represent the result of oxidation of potential shallow mineralization associated with porphyry and/or breccias systems. Finally, there is a potential for identifying significant base-metal skarn mineralization adjacent to the main porphyry system in calcareous Paleozoic rocks.

1.3 Exploration

Regal Resources has been active on the Sunnyside Project since its acquisition in 2010. Regal's exploration efforts have focused on data compilation and confirmation and target evaluation. The compilation work was conducted by personnel with MinQuest, who were retained by Regal as geological consultants.

Data compilation included acquiring and digitizing surface geochemical data including rock chip samples from the files of the U.S. Bureau of Mines (Chatman, 1994), the Arizona Department of Mines and Mineral Resources, and historical exploration reports (largely unpublished) produced by companies such as ASARCO, Anaconda, Kerr-McGee, West Range (now Xstrata) and Rio Algom. More importantly, Regal has

located and acquired a considerable amount of the drill core that remains from historical drilling completed at the project. This compilation effort, which included the re-logging and sampling of many of these drill cores, has confirmed historical findings and provided additional data that has allowed for the refinement of the geological model at Sunnyside and the mineralization targets that are discussed in the Conclusions and Recommendations sections of this report as the focus for future exploration at the Project.

Historical Drill Core and Drill Data

Regal has located and acquired a considerable amount of the drill core that remains from historical drilling completed at the project. A detailed program of cataloguing, logging (re-logging), photographing, and re-assaying of the available historic drill core was completed during the first half of 2011. Logging and reinterpretation of the previous drilling has confirmed and refined the target concepts being advanced by Regal. Regal Resources has (re-) logged five (5) "deep" core holes and 12 shallower core holes at Sunnyside to evaluate lithologies, alteration and mineralization within the system.

Along with the re-logging of the five (5) deeper and 12 shallower historical drillholes completed on the Property, Regal has evaluated drill logs and core from 8(+) other historical drillholes. The re-logging and evaluation of the 5 deeper historical drillholes, in particular, has provided a consistent nomenclature that has been applied to the other historical drillholes, all of which were the result of multiple drilling (and logging) programs completed by different workers and were difficult to compile previously without this common framework. In the opinion of the author, this is the most significant outcome from the recent work completed by MinQuest on behalf of Regal and has resulted in an interpretive cross section that illustrates the geological potential of the Property and provides an excellent geological model for the Property that can be used as a guide for future exploration.

Geochemically, Regal selected 78 samples from historic core holes drilled within the chalcocite target area for resampling and reassay. The core holes (BB 2, 3, 4 and 6) are located in the northeastern portion of the project area. Samples were collected from core along the same intervals as historic assays. The new samples were submitted to Skyline Labs in Tucson, Arizona. The historic core sampling results of the Chalcocite Target were confirmed by the recent reassays conducted by Regal indicating significant intervals of copper and silver mineralization.

A summary of selected portions of Regal's re-assay program is provided below in Tables 1 and 2. More detailed results of the re-assay program are provided in Appendix 2.

Hole ID	From	То	Interval	Cu (%)		Ag (g	/t)			
	(m)	(m)	(m)	(Historical)	(Regal)	(Historical)	(Regal)			
BB - 2	12.20	42.68	30.48	0.47	0.45	2.2	4.4			
BB - 3	4.27	27.44	23.17	0.60	0.27	0.8	4.9			
BB - 3	182.93	219.51	36.58	0.32	0.32	2.0	3.2			
BB - 4	3.90	57.93	54.03	0.46	0.45	2.1	3.6			
BB - 6	6.10	36.59	30.49	0.32	0.34	4.2	8.6			
BB - 6	91.46	149.39	57.93	0.64	0.82	4.6	12.8			

 Table 1. Sunnyside Chalcocite Target Confirmation Analyses.

Table 2. Sunnyside Skarn Target Confirmation Analyses.

Hole ID	From	То	Interval	Cu	Pb	Zn	Ag	Source
	(m)	(m)	(m)	(%)	(%)	(%)	(oz/ton)	
TCH-2	1418.25	1435.63	17.37	1.20	4.97	12.15	11.00	ASARCO - Historic
			(57ft)	1.17	4.27	10.70	9.86	REGAL (new)
	1453.00	1490.79	37.79	0.23	0.98	14.08	7.36	ASARCO - Historic
			(124ft)	0.23	0.91	13.58	7.36	REGAL (new)
TCH-2A	1255.79	1267.98	12.19	1.48	0.30	0.60	2.20	ASARCO - Historic
			(40ft)	1.42	0.26	0.58	2.41	REGAL (new)

The results of this work confirmed that historically reported grades and thicknesses of mineralization exist in both the skarn zone and at least two significant zones of chalcocite-rich mineralization. The data also provides confidence with respect to other historical data in that it shows remarkable consistency and repeatability for the copper assays. While silver assays are generally higher from the recent re-assay program, the range of silver values within mineralized zones is confirmed. These limited results suggest that historic assays from the Patagonia project are reliable and likely to be repeated by subsequent drilling or re-assaying.

Additional sampling conducted by Regal tested additional samples of the chalcocite and skarn targets along with the deep porphyry target and resulted in the collection of a further 183 samples of core from drillholes TCH2, TCH-2A, TM-13 and TM-14, 78 of which comprised samples of previously unsampled core. In summary, these samples confirmed and added to historical intersections.

In addition to the Cu and Ag values summarized above, the recent resampling of some historic drilling and surface samples indicate potential for low grade rare earth, rhenium and bismuth mineralization. Lanthanide elements are enriched in several areas of drilling and are occasionally present in surface sampling. Although poorly understood, these elements should be further studied for near surface potential. Bismuth is intimately associated with the massive sulfide portion of the skarn and should be evaluated in future drill programs. Rhenium values are intimately associated with molybdenum within the porphyry and skarn alteration.

1.4 Recommendations

In the opinion of the author of this report, the results generated by the data compilation and historical drill core re-logging and sampling program recently completed by Regal at the Sunnyside Project are sufficiently encouraging to warrant a significant exploration program. Furthermore, the author was impressed by the extent and degree of alteration observed in outcrops at the Property during a site visit conducted in late April 2012, which clearly indicates that a significant hydrothermal system has affected the rocks underlying the Property.

The Sunnyside Property hosts compelling shallow (within ~1000m of surface) and deep (below ~1000m of surface) Porphyry Cu-Mo targets. In addition, the Property hosts shallow Cu (+/- Ag) targets comprising mineralization associate with chalcocite enrichment zones and abundant breccias pipe systems, the latter having been mapped throughout the Property. Finally, base metal skarn mineralization has been intersected in several deep drillholes located on the northeastern portion of the Property.

In the opinion of the author, the Cu-Mo porphyry and Cu-Ag breccia and chalcocite targets are the most compelling and warrant further exploration. A phased exploration program is recommended. The Phase 1 exploration program would comprise a large soil sampling and ground geophysical program intended to examine the potential for identifying Cu (+/-Ag) mineralization associated with relatively shallow level breccias and/or chalcocite enrichment zones and the shallow Cu porphyry target.

The author recommends the completion of a large array (deeper penetrating) IP (Induced Polarization) survey as part of the Phase 1 exploration program. IP geophysical surveying is a technique that is commonly applied to the exploration of porphyry Cu systems due to its ability to highlight disseminated sulphide minerals associated with this deposit model. Modern survey systems, such as the Titan 24 system used by Quantec Geoscience, have the benefit of being able to penetrate to, and generate data from, significant depths and may even be able to provide information applicable to the targeting of the deep porphyry target at the Property. This is the primary reason for phasing the recommended exploration program as this will allow for the completion of such a deep-penetrating geophysical survey that may provide information to assist in the targeting of drilling to test the deep porphyry Cu target at the Property.

Drill testing of shallow breccias zone, chalcocite and porphyry targets, along with drill testing of the deep porphyry target, comprise the second phase of the recommended exploration program at the property. Obviously, the lower cost of conducting shallow drilling, combined with the benefits of identifying a potentially open-pitable resource at the property, would lead one to prioritize this effort over deeper drilling. However, a limited deep drilling program is recommended based on the fact that historical drillholes have already identified porphyry copper mineralization at the deep target and thus there exists a significant potential for identifying a potentially economic deposit analogous to that at the Resolution Cu Project, for example, located near Superior, AZ (see the Adjacent Properties section of this report).

In summary, the estimated cost of the Phase 1 soil sampling and geophysical surveying program is approximately **US\$300,000**. The estimated cost of the Phase 2 drilling program is approximately **US\$2,200,000**. As a result, the total cost of the recommended exploration programs at the Property is estimated at **US\$2.5M**. All of the work items listed above are considered by the author to be warranted at this time and none are contingent on the results of any of the others. The porphyry, chalcocite and skarn targets are defined sufficiently at this time to allow for further drill testing. The geophysical and geochemical surveys comprising the Phase 1 program are intended to explore for additional targets on the Property and refine the targeting for a Phase 2 drill program.

2.0 INTRODUCTION

APEX Geoscience Ltd. ("APEX") was retained in April of 2012 by Regal Resources Inc. ("Regal") to provide geological services with respect to an evaluation of the Sunnyside Project ("the Project" or "the Property") and the production of a NI 43-101 compliant technical report for the Property. The following report also provides a summary of the recent work completed by Regal at the Property comprising historical data compilation, re-sampling and re-logging of historical drill core, new sampling of previously unsampled drill core followed by revised data compilation with target evaluation. This report is intended to provide a summary of the technical merits of Sunnyside Project as part of Regal's planned move to the TSX-V (Toronto Venture Exchange) from the CNSX (Canadian National Stock Exchange).

The Sunnyside Project is located approximately 25km northeast of the town of Nogales in southern Arizona, USA (Figure 1). The Property comprises approximately 298 contiguous unpatented lode mineral claims for an area of approximately 5,462.9 acres (2210.75 ha) and is being explored by Regal for its potential to host a significant Porphyry Cu deposit, along with other potential styles of mineralization related to the porphyry model.

This technical report was written in compliance with the standards set out in NI 43-101, along with its Companion Policy 43-101CP and Form 43-101F1 of the Canadian Securities Administration (CSA). This report includes a summary of available geological, geophysical and geochemical information for the Project. The author of this report, Mr. Andrew J. Turner, P.Geol., has conducted a review of the data discussed in this report and conducted a site visit between April 25 and 26, 2012. Mr. Turner is a "Qualified Person" as defined by National Instrument 43-101 and is fully independent of both the issuer (Regal) and the property vendor, MinQuest Inc. ("MinQuest"). During the course of the property visit, the author observed evidence of a significant hydrothermal system on the Property. The author collected 6 rock grab samples and 1 sample from drill core that confirmed the presence of mineralization and alteration (see the Exploration Section of this report for additional details).

3.0 <u>RELIANCE ON OTHER EXPERTS</u>

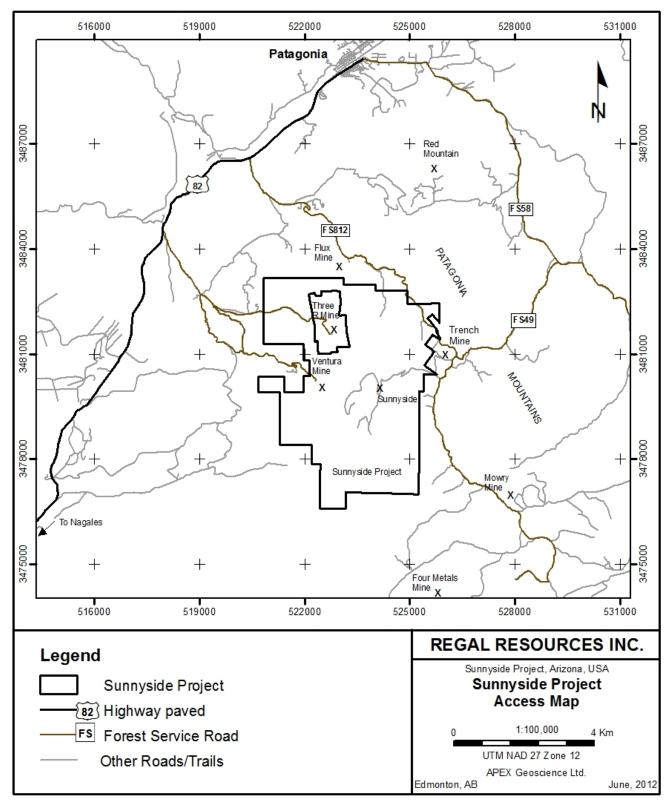
This report, written by Mr. Andrew J. Turner, B.Sc., P.Geol., Senior Geologist and Partner in the geological consultant firm APEX Geoscience Ltd., is a compilation of proprietary and publicly available information as well as information obtained during property a visit, which the author conducted between April 25 and 26, 2012. The author's certificate sheet is presented at the end of this report.

This technical report was written in compliance with the standards set out in NI 43-101, its Companion Policy 43-101CP and Form 43-101F1 of the Canadian Securities Administration (CSA). This report includes a summary of available geological, geophysical and geochemical information for the Project. The principle author of this report, Mr. Andrew J. Turner, P.Geol., has conducted a review of the data discussed in this report and conducted a site visit between April 25 and 26, 2012. Mr. Turner is a "Qualified Person" as defined by National Instrument 43-101 and is fully independent of both the issuer (Regal) and the property vendor, MinQuest Inc. ("MinQuest"). During the course of the property visit, the author observed evidence of a significant hydrothermal system at the Property. The author collected 6 rock grab samples and 1 confirmation sample from drill core that confirmed the presence of mineralization and alteration (see the Exploration Section of this report for additional details).

The author was shown around the Property by Mr. Herb Duerr of MinQuest, who are vending the Property to Regal. Personnel form MinQuest have conducted the majority of the recent re-evaluation/exploration work at the Property, including data compilation and mapping. The author, in writing this report, has reviewed the recent work completed on the Property and found that it was completed in accordance with industry standards by well experienced and professionally registered geologists. The author found no significant issues or inconsistencies that would cause one to question its validity.

The author, in writing this report, has used as sources of information those publications listed in the references section. Government reports referenced by this report were prepared by a person (or persons) holding post secondary geology or related university degrees and, therefore, the information in those reports is assumed to be accurate. Any reports referenced herein that were written by other geologists prior to the implementation of the standards relating to National Instrument 43-101 may be assumed by the reader to be accurate based on a review of the information conducted by the author, although any such information will not be the sole basis for any conclusions or recommendations made in this report.

A recent Technical Report (Noland, 2011) was completed for the Sunnyside Property that was not accepted by the TSX. The author of this report, Mr. Turner, has conducted a review of the previous Technical Report (Noland, 2011) and has borrowed sections from it, where applicable and with permission, that have been incorporated into this report (Accessibility, Climate, Infrastructure and Physiography, Regional Geology, Deposit Types and History sections).

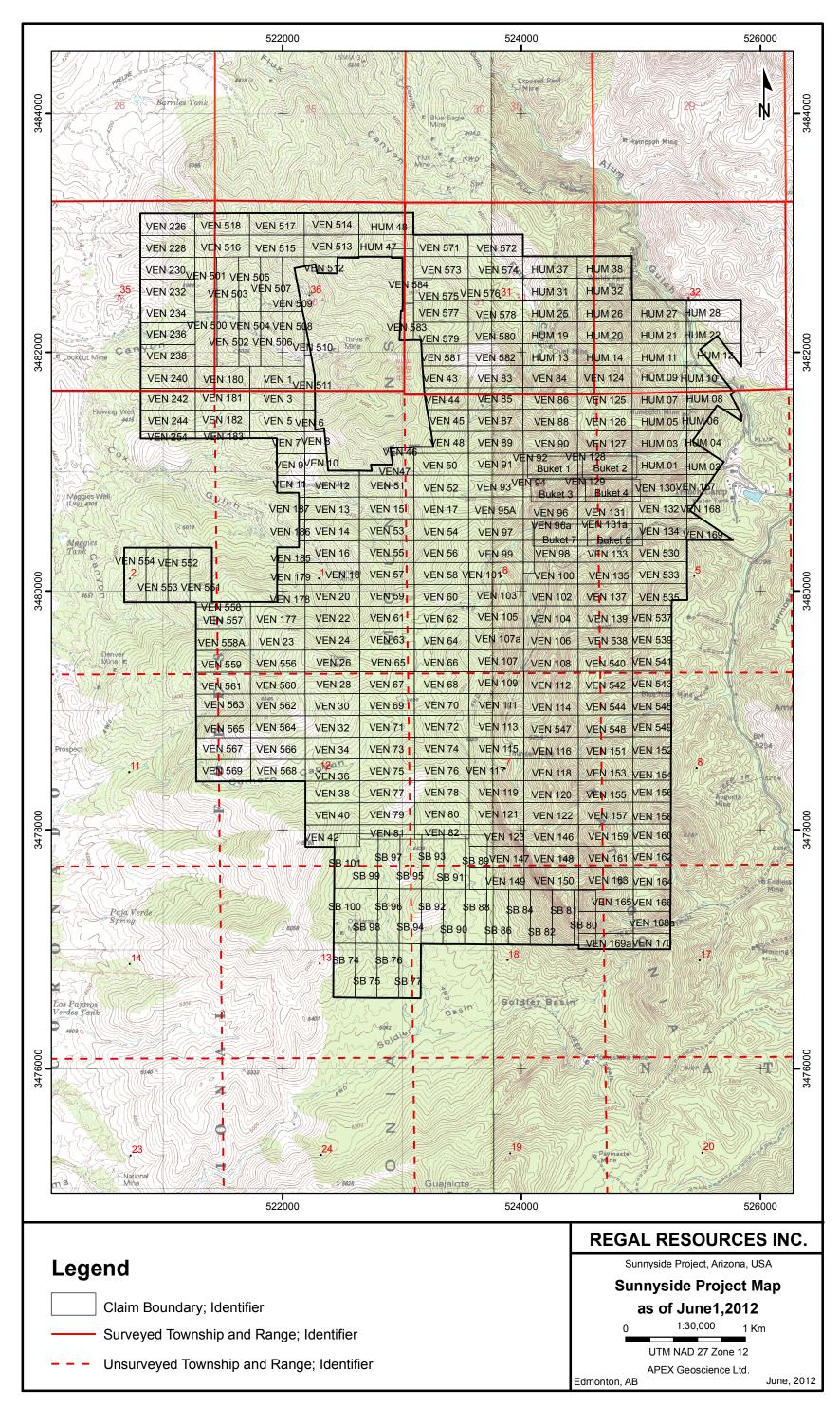

4.0 PROPERTY DESCRIPTION AND LOCATION

The Sunnyside Project comprises 298 unpatented lode mining claims covering a total of approximately 5,462.9 acres (2210.75 ha). The property straddles three separate mining districts in Santa Cruz County, Arizona. These districts are referred to as the Harshaw (northeast), Patagonia (south) and Palmetto (northwest) mining districts in the historic literature. The Property lies within the Coronado National Forest that is administered by the United States Forest Service, an agency of the United States Department of Agriculture.

The project is located approximately 85km south of Tucson and 25km northeast of Nogales, Arizona (see Figure 1 and 2). The Property is approximately centered on latitude 31°28' North and longitude 110°45' West and is located relative to UTM NAD 27 Zone 12 (Universal Transverse Mercator projection, Zone 12 of the North American Datum established in 1927) between coordinates 521000m and 526000m East and 3483000m and 43477000m North.

The federal lode mining claims comprising the Sunnyside Property each measures a maximum of 1,500 feet x 600 feet and were located on the ground by hand-held GPS and have not been legally surveyed. Relative to the Public Lands Survey System (PLSS), the claims comprising the Property are located in portions of surveyed Sections 35 and 36, Township 22 South, Range 15 East, portions of surveyed sections 31 and 32, Township 22 south, Range 16 East, and in parts of unsurveyed Sections 5, 6, 7, 8, 17, and 18, Township 23 South, Range 16 East, and unsurveyed sections 1, 2, 12, 13, and 24, Township 23 south, Range 15 East, Salt and Gila River Meridian (Figure 3).

A list of the claims that currently comprises the Property is provided in Appendix 1. The BLM (Bureau of Land Management) database (LR2000) was queried by the author in order to confirm the status and ownership of the claims that comprise the Project. No significant issues were identified as all but 3 of the claims listed in Appendix 1 are registered with the BLM as "Active" with MinQuest as their "Claimant" (owner), with the exception of the "Bucket" claims that are owned by, and were acquired from, Russell


and Brian Corn (see "Corn Agreement" below). The three (3) claims in question (VEN 112, 114 and 129) have recently been located on the ground by MinQuest and will be registered with the BLM shortly.

The information provided by the BLM describes the general location of each claim relative to the Arizona PLSS (Township and Range system). This information was compared against the location of each claim, as illustrated in Figure 3, which was provided to APEX by MinQuest on behalf of Regal. No issues were identified by this review. Furthermore, the specific location of several claims was confirmed by the author through a field visit where location monuments and corner posts were identified on the ground, and a comparison with information contained in documents and detailed claim location figures that were provided by the Santa Cruz County Registrar in Nogales, AZ.

Property Agreements

The Sunnyside Property comprised a number of unpatented lode mining claims that were owned by MinQuest and were originally acquired by Regal in 2010 through an "option agreement". Since that time, MinQuest has acquired additional claims that have been added to the Property according to the agreement. Under the terms of the option agreement, Regal has the right to earn a 100% interest in the Property, less a 3% NSR retained by MinQuest, by making cash payments totaling US\$810,000 and by completing work expenditures totaling US\$25.5 million over a ten year period with a US\$40,000 cash payment and a US\$500,000 work commitment in the first year. In addition, Regal would be required to issue 2,000,000 shares to MinQuest over the same ten year period (see Regal Press Release dated Feb 8, 2010).

In February of 2012 (see Regal Press Release dated Feb 3, 2012), Regal announced that it had reached an agreement with MinQuest, the property owner and vendor under the original "option agreement" described above, whereby the Sunnyside option agreement would be replaced by a "Purchase Agreement". This new "definitive agreement" would, when fully executed and completed, replace the original option agreement and eliminate the cash, share and expenditure requirements therein. In return, Regal was required to pay MinQuest the sum of US\$800,000, of which US\$100,000 was to be paid as a non-refundable deposit within 3 business days of signing the Purchase Agreement, with the balance to be paid by the closing date of April 30, 2012. Furthermore, the new "definitive agreement" would reduce the NSR retained by MinQuest from 3.0% to 1.5%.

Since the date of the original "option agreement", the Property has evolved (grown) as a result of several staking events that were conducted by MinQuest on behalf of Regal. The claims that have been added to the Property have been staked within an "Area of Interest" (AOI), defined as 2 miles from the perimeter of the original Property boundary in the original "option agreement". Any claims staked or acquired within the AOI are automatically added to the Property, which in turn redefines the AOI with respect to future staking and/or property acquisitions by both parties. As a result, Regal controls all of the claims listed in Appendix 1.

On April 30, 2012 Regal and MinQuest signed an amendment to the "definitive agreement" described above whereby the closing date was changed to May 30, 2012, and the non-refundable deposit was increased to US\$500,000 by requiring an additional payment to MinQuest by Regal of US\$400,000.

On May 23, 2012, Regal and MinQuest further amended the terms of the "definitive agreement" described above whereby, in exchange for a nominal fee, the closing date was changed to June 30, 2012. As of the date of this report, a total of US\$500,000 and 50,000 shares of Regal has been paid to MinQuest by Regal and a balance of US\$300,000 remains to be paid as of the amended closing date of June 30, 2012. As a result, the purchase of the Sunnyside Property remains incomplete and Regal continues to control the Property under the terms of the original "option agreement".

Corn Agreement

A group of 6 mineral claims (Buket 1-4 and 7-8) cover a central portion of the Sunnyside Property in the vicinity of the historical Sunnyside Mine. These claims predate MinQuest's claims in the same area. As a result, MinQuest entered into an agreement with respect to the acquisition of these claims with their owners, Russell and Brian Corn ("the Corns"), on December 5, 2006, which was subsequently amended on October 19, 2009. Under the terms of the amended agreement, MinQuest has been granted the option to earn a 100% interest in the 6 Buket claims, less a 3% NSR retained by the Corns, by making payments totaling US\$415,000 over a 9 year period, US\$45,000 of which has been paid and a further US\$20,000 is due by December 5, 2012.

Permitting

The author is not aware of any environmental issues that would prevent Regal from exploring and potentially developing the Sunnyside Property.

Exploration activities at Sunnyside will be conducted under a Plan of Operations (POO) with the U.S. Forest Service (USFS), which owns all surface rights at the Property. Access to the project area and claim block is via public roads and USFS roads, which are shown on Figures 2 and 3. Legal access is available to Regal and the public at large with no restriction. Under the POO, exploration permits are issued for specific work programs with allowable areas of total disturbance defined by individual Ranger Districts. Once the permit is issued, a suitable bond is posted as determined by the USFS and defined disturbances are allowed during the life of the permit. Currently, REGAL has submitted a POO for further drilling at the Property and the permit is being processed by the USFS. Approval is anticipated in time for a 2012 work program.

5.0 <u>ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND</u> <u>PHYSIOGRAPHY</u>

The Sunnyside property is located in Santa Cruz County, Arizona within a broad swath of porphyry copper deposits that can be followed from La Caridad in Mexico to Mineral Park located in the northwestern part of Arizona. The historic Patagonia Mining District is located in the Patagonia Mountains crossing from Sonora State in Mexico into Santa Cruz County, Arizona. The Sunnyside Project is centrally located roughly along the middle of the Patagonia Mountains (Figure 2). Mount Washington is the highest point in the range at 2,201m ASL, and is some 7km south of the southern border of the property. The range is generally steep and rugged on the north and south ends with moderate to steep topography in the center. Elevations vary greatly, due to the significant topographic relief, ranging from approximately 1400m in the northwestern potions of the Property up to approximately 2200m in the southern portions of the property.

Vegetation is fairly typical for the elevated portions of the Sonoran desert region where cactus gives way to forest. The property area includes desert grasses, occasional cacti and thick shrubs and trees comprising manzanita, mountain mahogany, cedar and oak. The climate is arid to semi-arid with daily temperatures averaging approximately 7°C in winter and about 26°C in summer. Annual precipitation averages 375-550mm with the bulk of the rain resulting from showers and thundershowers that occur from July to October, referred to locally as the "monsoon season". Occasionally, snow may fall in the winter but field work can usually be undertaken year-round.

Water is not abundant with most of the local supply derived from wells, springs and rivers. Springs are common in the higher canyons. Many of the streams have intermittent flows. Water for historical drilling was trucked to site having been sourced elsewhere. However, an historical drillhole in Humboldt Canyon intersected artesian waters and the flow is thought to be sufficient to support a single drill.

Road access to the Property is available along the east and central portions of the property from the town of Patagonia, Arizona, which in turn is accessed on State Highway 82 from Nogales (see Figure 2). From Patagonia, one exits south onto the County maintained Harshaw Road (also designated as Forest Roads 58 and 49) and continue for 14 kilometers and then turns west on Forest road 812 for ~700m to access the north portion of the property. The Harshaw Road from Patagonia is partially paved and otherwise a well graded two lane gravel road suitable for large vehicles or two passenger cars at a time. The Forestry roads and trails on the property are unmaintained dirt roads suitable for 4x4 vehicles only. An ever-present risk in the southwest U.S. is the potential for flash-flooding during times of precipitation.

The town of Patagonia offers few services. Most supplies and services required for exploration are available in Nogales, 32 km (by road) southwest of Patagonia or in Tucson which is 100 km (by road) north of Patagonia. A full scale mining operation would likely draw manpower and other resources from Patagonia, Nogales and Tucson, AZ (see Figures 1 and 2). Power is readily available via a cross county transmission line adjacent to the property. There is abundant open and relatively flat land both to the east and west of the project boundaries that would be suitable for tailings, leach pads, and waste storage facilities.

6.0 <u>HISTORY</u>

The Sunnyside Property is located within the margins of the Patagonia, Harshaw and Palmetto mining districts (Figure 3), portions of which were worked as early as 1859 (Chatman, 1994). Rich silver grades were initially extracted from the Mowry Mine (Schrader, 1915). In addition, the Trench, Company, and other veins were being worked in the Patagonia Mountains, augmenting the installation of smelters for the reduction of these ores (Schrader, 1915). In the early 1900's the United States Smelting And Refining Company erected a custom smelter and mill for ores throughout the Harshaw, Palmetto and Patagonia districts (Schrader, 1915; Chatman, 1994).

The first reported "modern" exploration work started in 1912 when Magma Copper explored and mined the high-grade chalcocite ores at the 3R Mine (Chatman, 1994).

During this same period, United States Smelting and Refining Company (USSRC) erected a custom smelter on the site of the Trench patents and proceeded to mine the base and precious metals veins that occur within the Trench Property. This mining and smelting activity took place from 1906 to 1962 (Chatman, 1994). The life-of-mine production (1918 to 1945, as well as the latter half of the 1800's) for the "Trench Mine" was approximately 237,000 stone (~1500 tonnes) of material averaging 8.5% Pb, 6.3% Zn, 13 oz/st (~6.4%) Ag, and minor Cu and Au (Kieth, 1975).

Kino Copper Co. acquired the '4 Metals Mine' in the early 1920's, and diamond drilling on the property was completed in 1929-1930 by Paul Billingsley. Three holes of approximately 1000 feet (~300m) in depth were completed (Farnham, 1953). Coronado Mines Inc. took control of the property in 1942 and existing mine workings were sampled by the American Smelting and Refining Co. (Chatman, 1994). Drilling on the property took place once again in 1954 by Potash Co. and Duval Sulfur (AGDC, 1954). From 1963 to 1965, extensive diamond drilling was conducted on the property by Noranda Mines Ltd. and subsidiary West Range Co., however, data is unavailable for this work (Johnson, 1963; Penny 1965).

The 3R Mine was incorporated as part of the 3R Mine Group by Keith (1975), and includes the 3R Mine, the West Side Mine, and one other (the Blue Rock No. 8 ?). Significant production from the 3R Mine Group ensued in 1912, and 30,000 st (~190 tonnes) of ore with 9% Cu was shipped from 1912 to 1914 (Chatman, 1994). In the late 1910's, Harrison Interests took over operations and constructed a "semiflotation" mill to work on 3% to 5% Cu ores (Handverger, 1963). An option was taken by Patagonia-Superior Co. (a Magma Co. subsidiary) wherein 10,000 st (~63 tonnes) of 2% to 3% Cu was delineated (Handverger, 1963). During the 1920's, Magma Copper conducted diamond drilling, mining, and mill construction (Chatman, 1994). It is estimated that approximately 4,500 st (~28 tonnes) were mined from 1914 to 1944 (Chapman, 1944).

In 1950, Kennecott Copper Corp. began exploration in the region for (low-grade) hightonnage copper deposits, which was followed by surface and underground sampling, as well as five diamond drill holes by Consolidated Copper Mines Co. in 1951 (Chatman, 1994). Copper concentrations above the cutoff target were found only in fracture zones, not in bulk-minable zones (Chatman, 1994). Two more lease operations followed up to 1956, where production of approximately 1,100 st (~7 tonnes) occurred. McFarland and Hullinger leased the site in 1959 and 1962 and conducted a geologic assessment; the site was sold to Anaconda in 1963 (Chatman, 1994). Anaconda entered a joint exploration venture with ASARCO from 1972 to 1979, and drilling was conducted by Anaconda during this period (Pierce, 1979; Chatman, 1994). Total life-of-mine production from the 3R Mine Group (1908 to 1956) is estimated to be 130,000 st of 4% Cu average, with minor Ag, Pb, Zn, and Au (Keith, 1975).

In 1929 Anaconda conducted exploration core drilling at both the 4 Metals and 3R mines. No economic mineralization for the time was found. In the early 1940's to 1958 ASARCO (originally the USSRC) explored and mined the Flux Canyon Mine for flux and base metal feed for the smelter. In 1948, both Consolidated Copper and ASARCO began exploration through drill programs of various breccia pipes and surface copper oxide showings (Wilson, 1951 – Pat1951). The site was purchased by American Smelting and Refining Co. in 1939 (Chatman, 1994). Mining had been worked to a depth of 430 feet by 1944, and deep sulfur ores (lead-zinc-silver) were replacing oxide ores as the primary economic target (Kartchner, 1944). Production of 4000 st/month occurred during the early 1950's (Chatman, 1994). According to Asarco records with the Arizona Geological Survey, 1.5 million tons was mined from the Flux Canyon area between 1950 and 1962. The average grade was reported to be 7% combined lead-zinc and 4.5 oz/ton silver.

In the 1960's Anaconda, Inspiration, Phelps Dodge, Kerr McGee and West Range held property positions and conducted drilling within and adjacent to the Property boundaries (Graybeal, 1972; Kurtz, 1972; Sell, 1992; Chatman, 1994). Additional companies involved in exploration of adjacent areas between the 1950's and 1970's include Superior Oil, Utah Construction, Continental Copper, Duval Sulfur, Getty Oil, and others (Chatman, 1994).

From 1971 to 1974 ASARCO consolidated all mineral rights in and around the Sunnyside Project (Graybeal, 1972) through various JV agreements. Although Kerr McGee, West Range and Anaconda had drilled moderate to deep holes (Graybeal, 1972), none had explored the central portion of the current Property because of a confluence of claim boundaries. ASARCO began what turned out to be a drill program that explored both the shallow and deep portions of the Sunnyside porphyry copper-molybdenum system. This drilling was carried out from 1974 to 1988 (Graybeal, 1974a; 1974b; 1974c; 1976; 1980; Koutz, 1981a; 1981b; 1982; 1985; 1986; 1988; Kurtz, 1975). The last known exploration within the boundaries of the claim position occurred in 1993 when Rio Algom conducted shallow RC drilling on the southern portion of the project area. No significant exploration has been conducted within the Property boundaries since that time.

Reliable records are available for work completed by Anaconda, ASARCO, Kerr McGee, Rio Algom and West Range (Graybeal, 1972). Various areas within and adjacent to the boundaries of the current Property were tested by approximately 125 drill holes between 1951 and 1993. Of these areas, some 43 holes tested the

Sunnyside, BX, Bucket, and Skarn targets. The bulk of the remaining holes are located adjacent to the northwestern portion of the Property. Available records indicate that all but five intersected significant grades of mineralization in portions of each hole. Locations of these holes are shown on Figure 4 and a summary of significant historical intersections is provided in Tables 3a, 3b and 3c. The earlier phases of drilling by mining and exploration companies in the 1950's through the early 1970's revealed the existence of one or more significant, if deep, intrusive porphyry systems (Graybeal, 1972, 2007), including adjacent skarn mineralization. Work by ASARCO in the 1970's further refined and defined the locations of the main mineralized areas that are discussed in later sections of this report.

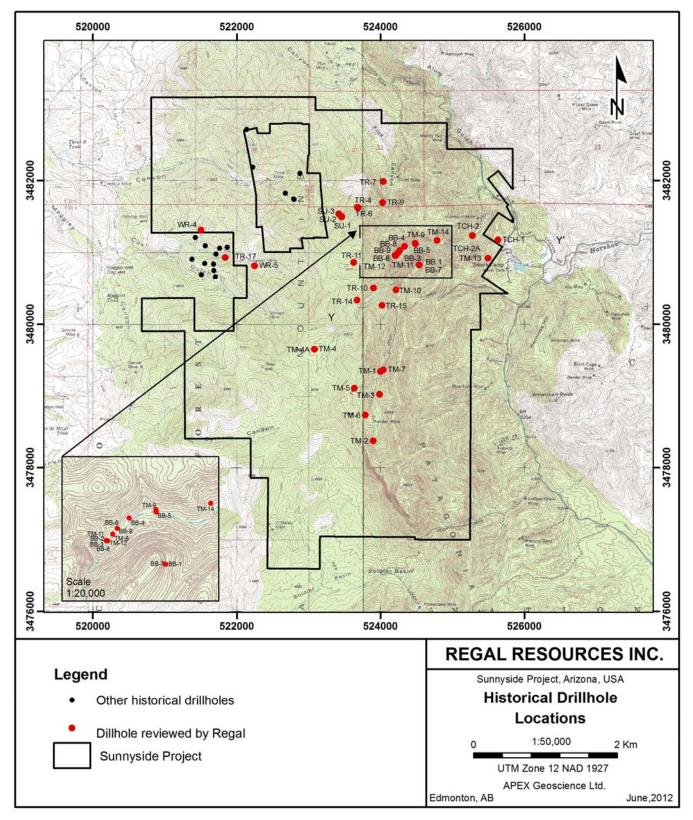


Figure 4.

Hole No.	Total Depth (ft)	Total Depth (m)	From (ft)	To (ft)	Interval (ft)	Interval (m)	% Cu	Ag (oz/ton)
Sunnyside	-Bucket Br	eccia - Cha	Icocite Zone					
TM-8	5,677	1730.37	200	540	340	103.63	0.46	0.31
TM-9	1,745	531.88	500	900	400	121.92	0.12	0.17
TM-10	567	172.82	190	400	210	64.01	0.02	0.25
TM-11	668	203.61	40	350	310	94.49	0.40	0.33
TM-12	622	189.59	10	570	560	170.69	0.26	0.3
including			10	100	90	27.43	0.41	0.21
TR-10	5,486	1672.15	110	160	50	15.24	0.63	0.21
and			310	360	50	15.24	0.31	0.15
TR-11	5,448	1660.57	20	200	180	54.86	0.27	tr
TR-14	5,407	1648.07	120	190	70	21.34	0.47	0.21
TR-15	5,309	1618.20	40	110	70	21.34	0.12	0.17
BB-1	821	250.24	350	490	140	42.67	0.41	tr
BB-2	517	157.58	40	140	100	30.48	0.60	0.04
BB-3	725	220.98	14	90	76	23.17	0.60	0.04
BB-4	797	242.93	10	190	180	54.86	0.47	0.04
BB-5	800	243.84	230	310	80	24.38	0.15	tr
BB-6	800	243.84	340	450	110	33.53	0.91	0.27
BB-7	736	224.34	340	490	150	45.72	0.03	0.17
BB-8	600	182.88	130	294	164	49.99	0.41	0.27
BB-9	510	155.45	310	410	100	30.48	0.21	0.09
BX Breccia	a - Chalcoc	ite Zone						
TR-4	1,927	587.36	40	100	60	18.29	0.17	tr
and			540	640	100	30.48	0.37	tr
TR-6	2,106	641.92	360	600	240	73.15	0.17	tr
SU-1	701	213.67	305	551	246	74.98	0.20	0.13
SU-2	890	271.28	341	658	317	96.62	0.67	0.16
SU-3	644	196.29	421	495	74	22.56	0.63	0.35

Table 3a. Sunnyside Project Significant Historical Drillhole Intersections – Chalcocite Zones.

Hole No.	Total	Total	From (ft)	То	Interval	Interval	% Cu	% Mo	Au	Ag
	Depth	Depth (m)		(ft)	(ft)	(m)			(oz/ton)	(oz/ton)
	(ft)									
Porphyry Z	one									
TM-8	5,677	1730.37	1350	2710	1360	414.53	0.36	-	-	0.31
and			4300	5500	1200	365.76	0.25	0.017	0.003	0.10
TR-4	1,927	587.36	1360	1780	420	128.02	0.16		(too shallow	()
TR-6	2,106	641.92	1340	1520	180	54.86	0.15		(too shallow	/)
TR-10	5,486	1672.15	3700	4600	900	274.32	0.44	0.016	-	0.12
including			3860	4210	350	106.68	0.60	0.033	0.005	0.15
TR-11	5,472	1667.89	4800	5472	672	204.83	0.37	0.010	0.003	0.16
TR-14	5,407	1648.07	4590	4980	390	118.87	0.46	0.015	0.004	0.20
TR-15	5,309	1618.20	4630	5309	679	206.96	0.23	0.011	0.002	0.15

Table 3b. Sunnyside Project Significant Historical Drillhole Intersections – Porphyry Targets.

Table 3c. Sunnyside Project Significant Historical Drillhole Intersections – Skarn Zones.

Hole No.	Total Depth	Total Depth (m)	From (ft)	To (ft)	Interval (ft)	Interval	% Cu	% Pb	% Zn	Ag (oz/ton)
	(ft)	Deptii (iii)		(ft)	(11)	(m)				(02/1011)
Skarn Zon										
TM-13	4,777	1456.05	3977	3979	2	0.61	2.56	8.65	11.60	3.56
TM-14	4,580	1396.00	3700	3710	10	3.05	0.15	-	-	2.20
TCH-1	5,560	1694.71	3907	3911.5	4.5	1.37	2.64	12.68	14.52	1.76
			4846	4847	1	0.30	0.43	1.18	10.95	2.16
TCH-2	5,830	1777.01	1407	1409	2	0.61	2.64	12.68	14.52	1.76
			4030	4037	7	2.13	1.27	0.18	0.60	2.16
			4046	4050	4	1.22	1.59	0.09	0.12	1.24
			4100	4109	9	2.74	0.10	1.02	1.05	1.36
			4127	4166	39	11.89	0.71	0.21	0.12	1.10
			4195	4209	14	4.27	2.32	0.73	0.09	5.86
			4209	4215	6	1.83	0.09	3.35	3.39	1.60
			4243	4312	69	21.03	0.27	2.50	3.12	1.68
			4450	4490	40	12.19	0.11	1.57	1.38	3.35
			4653	4710	57	17.37	1.30	4.97	12.20	10.82
			4767	4891	124	37.80	0.23	0.86	14.10	7.36
			4913	4921	8	2.44	0.04	0.28	3.95	2.30
			5216	5217	1	0.30	0.04	1.70	2.10	1.64
TCH-2A	2,209	673.31	4120	4160	40	12.19	1.50	0.30	0.60	2.20
			4310	4337	27	8.23	1.20	0.70	0.30	4.00

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

Geologically, the Sunnyside Project is situated in a broad northwest trending corridor of porphyry copper deposits that straddles the U.S. – Mexico border. This corridor is defined by many deposits from Groupo Mexico's La Caridad mine located in central Sonora, Mexico, through to Mercator Mineral's Mineral Park mine located in northwestern Arizona (see Figure 5).

Geographically (and geologically), the Sunnyside Project is located in southern Arizona within the Basin and Range province that covers most of the southwest United States and northwestern Mexico. The Basin and Range province is characterized by linear mountain chains separated by broad flat valleys that have resulted from tectonic extension that began some 17 million years ago in the Miocene.

The Project is located in the Patagonia Range of mountains approximately 25km northeast of Nogales, AZ. The range is cored by a Laramide, multi-phase intrusive complex comprising quartz monzonite to granodiorite and lesser quartz-feldspar porphyry. Radiometric age dates completed by the USGS and others (Graybeal, 2007) suggest the emplacement of the intrusive occurred between 74 and 58 Ma. As is typical of the Basin and Range region, where normal faulting often results in the juxtaposition of differently aged rocks, there is a fault zone along the Patagonia Range that causes Proterozoic crystalline rocks to crop out along the western range front whereas the eastern part of the range exposes complexly faulted Paleozoic to Mesozoic sedimentary and volcanic rocks (Figure 6). The Laramide intrusions fill the divide between the Precambrian and Paleozoic rocks. Younger Cenozoic-age volcanics were deposited over the northern portion of the range and are likely related to the extension that resulted in the development of the Basin and Range physiography.

7.2 Property Geology

Principal geological elements of the Sunnyside property are shown on Figure 7. As described above, the oldest rocks in the area occur along the western edge of the property. These rocks include a package of Proterozoic crystalline rocks described as meta-intrusive to meta-sediments. Along the eastern border of the project area Cretaceous sediments and volcanics overlay Paleozoic limestone and shale. Drilling has indicated apparently complex folding and faulting within the Paleozoic and Cretaceous rocks that is likely related to Laramide tectonics.

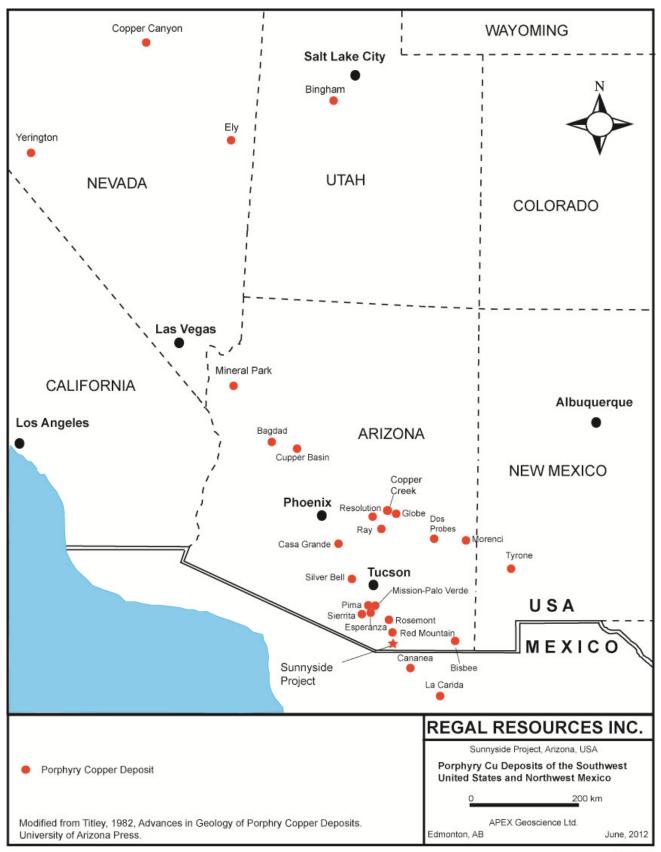
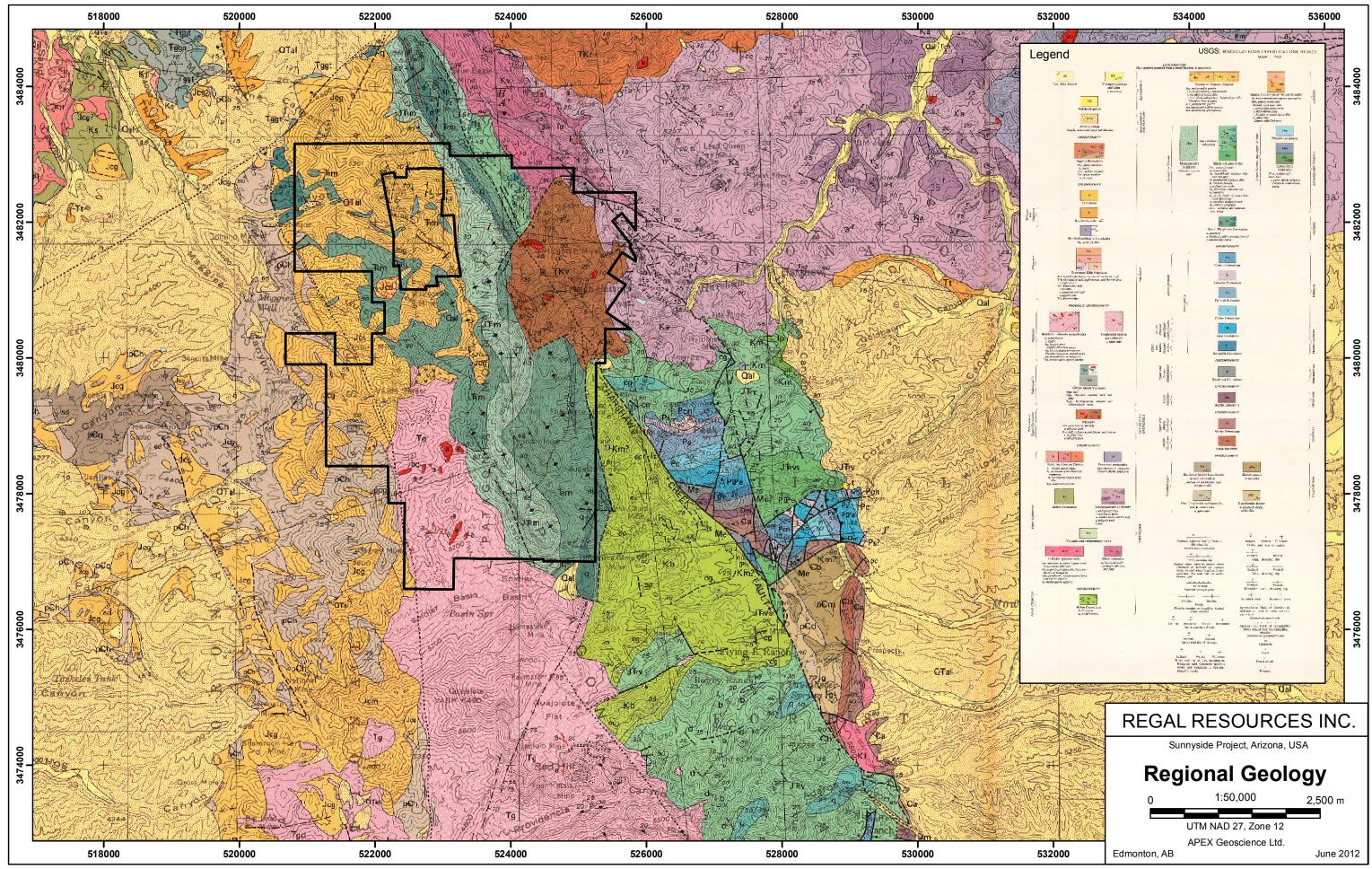



Figure 5

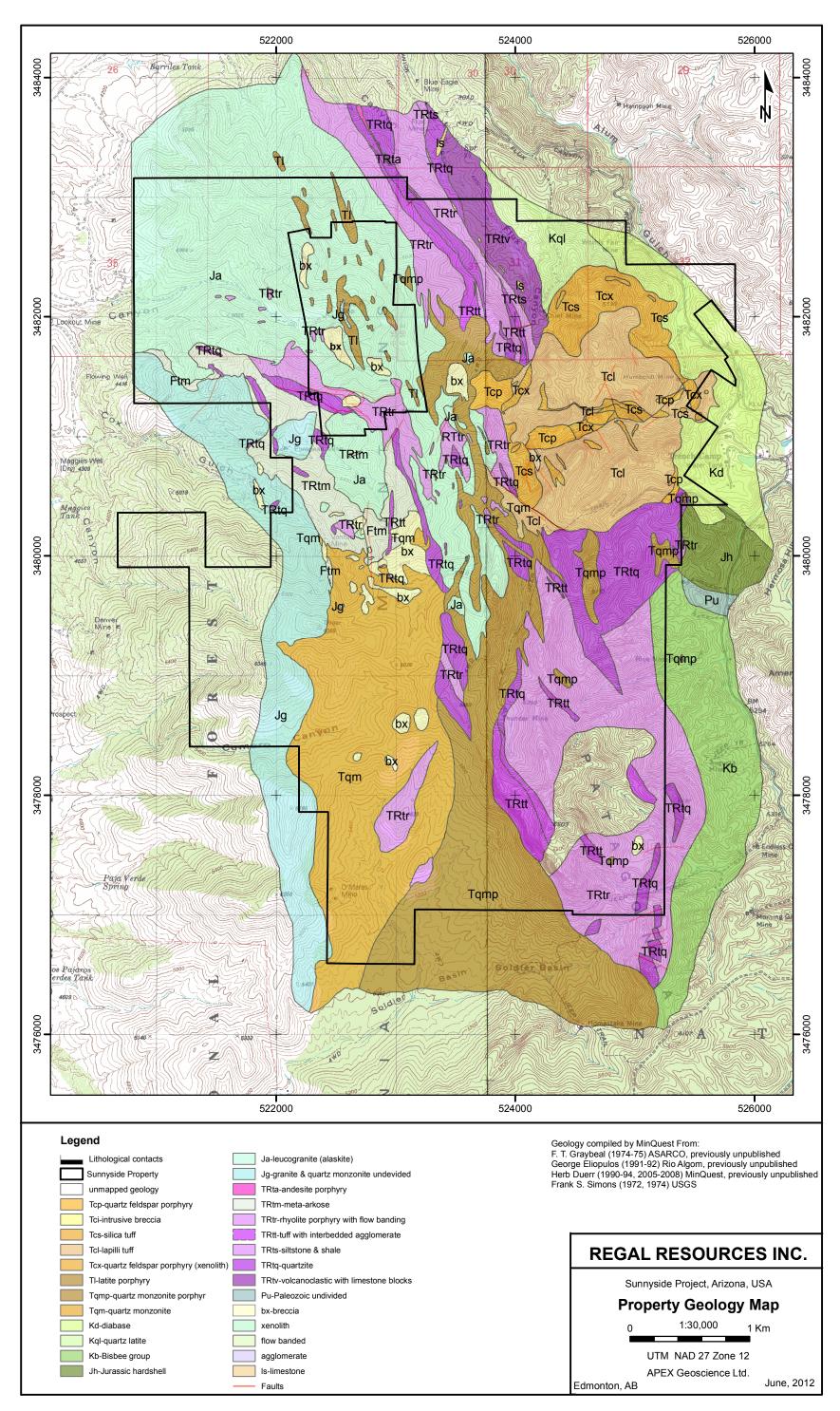


Figure 7.

The central portion of the project area is composed of multiple phases of Laramide-age intrusive. The intrusive is composed of granodiorite to quartz monzonite with several quartz-feldspar-porphyry (QFP) intrusions. The Laramide intrusions now occupy a significant structural zone between the Precambrian rocks on the west and the Paleozoic-Cenozoic rocks on the east.

Covering the intrusive to the south, north and east are wide spread Tertiary volcanic and volcanoclastic material described as a lapilli tuff. This material is believed to be contemporaneous with the intrusive activity and derived from the same material. Much of the rock is highly altered with textures nearly completely replaced by pyrophyllite and silica where it overlies the mineralized intrusive at depth. The lapilli tuff was formed concurrent with the Sunnyside intrusive event. This event formed a circular feature approximately one mile in diameter and further described as a diatreme. The lapilli tuff and associated maar deposits filled the diatreme and breached the northeastern diatreme boundary. The lapilli tuff is believed to be derived from numerous cycles of pyroclastic eruptions and attendant intrusions.

7.3 Mineralization

During the property visit conducted by the author, it was apparent that a significant hydrothermal system is exposed at surface at the Sunnyside Property. The Sunnyside Project exhibits a very complex pattern of intrusive rocks that represent multiple phases of intrusive activity. Along with several of these phases of intrusion have come different phases of alteration and/or mineralization. However, the most intense alteration observed at surface appears to be focused around quartz-feldspar porphyry (QFP) intrusions. The QFP bodies appear to have been instrumental in the formation of an approximate 1.5km diameter diatreme overlying the deep porphyry copper system (see Figure 7). The diatreme is composed of milled rock that has been described as lapilli tuff. Within the boundary of the diatreme several QFP outcrops present themselves as extrusive flow domes. The lapilli tuff and associated maar are extensively altered to an advanced argillic assemblage containing enargite, covellite and chalcocite. From historical drilling, the advanced argillic alteration grades downward into phyllic and then potassic alteration assemblages containing varying amounts of chalcopyrite and molybdenite. An alteration map of the property is shown in Figure 8 and was compiled by Graybeal (2007) from several historical exploration programs.

The mineralization occurring within the project boundaries has been explored by various companies (Asarco, Kerr McGee, Anaconda, etc.) and has been studied by the U.S. Geological Survey (Vickre, *et al.* 2009 and Graybeal and Vikre, 2010) sporadically over the last forty years. The multi-phase intrusive core of the Patagonia Range in the area of the Property appears to have developed adjacent to/along a long-lived fault zone

(Guajalote Fault). Vickre (2009) reports that at least six intrusive events occurred within the Patagonia Mountains over a period of 16 million years. The QFP stocks of Sunnyside intruded between 61 and 58 Ma (Graybeal, 2007, Vickre etal, 2009). Individual alteration areas overlap. All of the historical work has identified alteration and mineralization at Sunnyside that is consistent with the classic vertically and concentrically zoned porphyry copper system as illustrated in Figure 9 from Sillitoe, 2010. Although Sunnyside has many of the characteristics of this model, there are several complexities, one of which comprises potential overprinting, or overlapping, of adjacent systems/intrusions. The extent of these differing mineralization systems within the Sunnyside project boundaries were never completely delineated or defined by historic workers. Although the major target types currently being targeted by Regal (see the Exploration section of this report) were known by early workers, their extents and dimensions remain poorly defined (Graybeal 2007).

7.4 Sunnyside Exploration Targets

As a result of Regal's recent work to compile and re-evaluate all of the historical work completed at the Property, a number of discreet targets have been identified. The primary focus is on the identification of porphyry copper (+/- molybdenum) mineralization. The main porphyry target comprises the deep porphyry system identified in historical drilling. However, recent analysis of new data generated from the examination of the historical drill core and surface geologic mapping has identified a potential for identifying porphyry copper mineralization closer to surface in the vicinity (and likely west of) the western limit of the historical drilling in the northern part of the Property near drillhole TR-11. In addition to the porphyry targets, there is a potential for identifying significant copper mineralization in chalcocite enrichment zones located relatively near surface, which may represent the result of oxidation of potential shallow porphyry mineralization (as described above). Potential also exists for a large, multimetal target disseminated within the diatreme. Finally, there is a potential for identifying significant base-metal skarn mineralization adjacent to the main porphyry system.

7.4.1 Deep Porphyry Target

The primary target being examined by Regal at the Property will be the deep porphyry target located in the north-central part of the Property. The QFP event related to the Sunnyside intrusive complex caused a strong hydrothermal system to develop over an area of at least 4 square miles. The intrusions and hydrothermal alteration have been dated between 61 and 58 Ma (Vickre *et al.*, 2009). The nearby Ventura porphyry system is dated at 65 Ma. The Red Mountain porphyry system is dated at approximately 62 Ma. The Four Metals breccia pipe has been dated at 60 Ma. It is currently believed that one or more overlapping alteration events may have reset or complicated the dates given for the Sunnyside system.

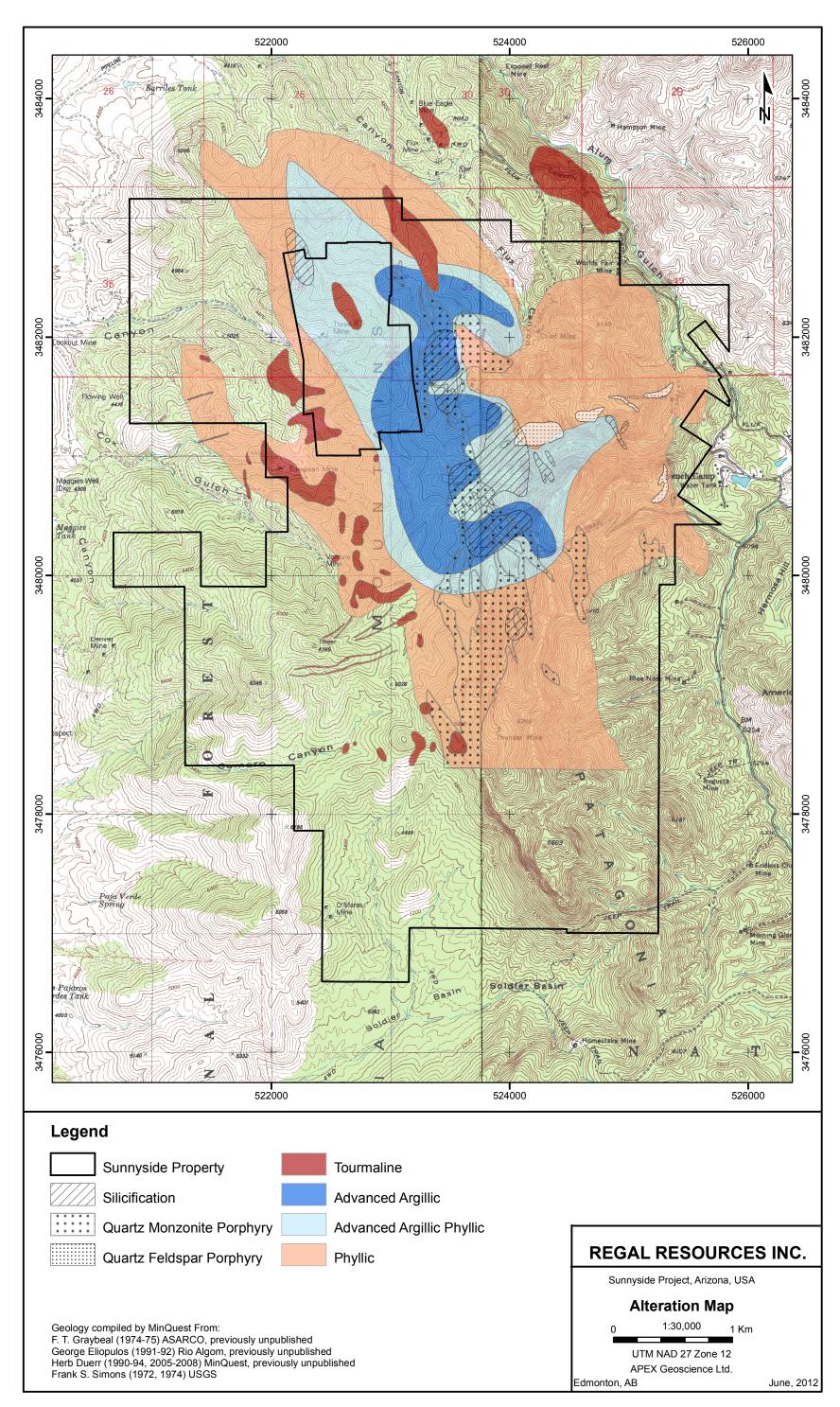
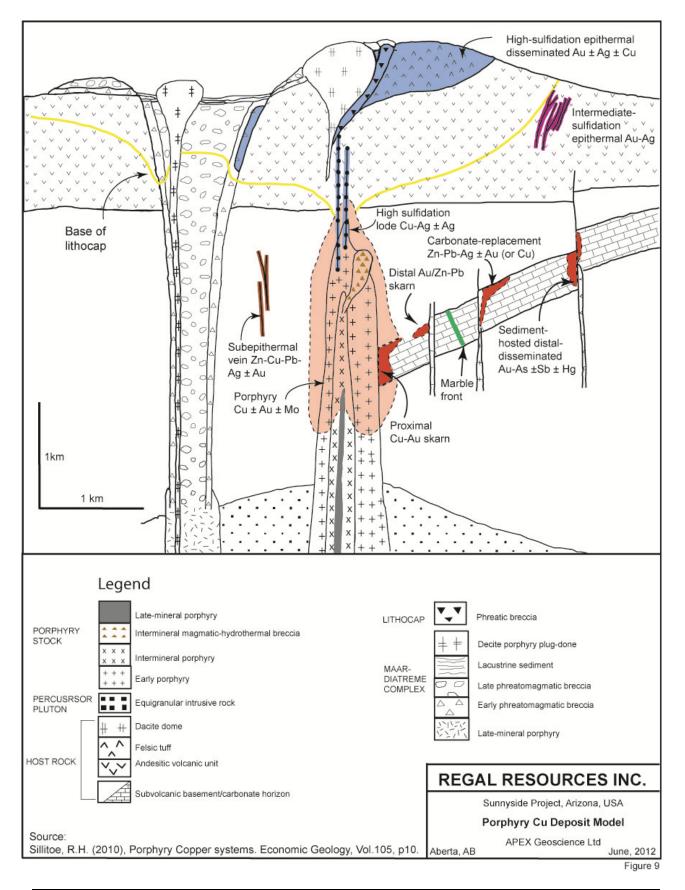



Figure 8.

The deep porphyry system at Sunnyside was identified by historical drilling. This drilling identified a target zone of approximately 4000 feet (~1200m) in and E-W direction and 5000 feet (~1500m) in a N-S direction (Figure 8B). In the north central portion of the Sunnyside property an inverted cone, or cupola, of porphyry copper-molybdenum mineralization has been identified by drilling starting at depths of approximately 3700 feet (~1100m) below surface and extending at least 2700 feet (~800m+) further in depth. However, recently identified alteration and mineralization in and around Drill Hole TR-11 has indicated the potential for identifying a porphyry system at higher levels immediately west of the main deep porphyry target.

7.4.2 Shallow Porphyry Target

An interesting geological observation, and observed by the author of this report, is the presence of gusano (or "wormy", or "patchy" texture) alteration at Sunnyside, particularly evident in the vicinity of the old Sunnyside mine. Gusano alteration comprises patchy (wormy) looking quartz-pyrophyllite-alunite alteration in the lithocap to overlying major porphyry systems around the world and normally occurs in the transition zone between the porphyry and the epithermal systems. For example, gusano texture has been described by Khashgerel, Kavalieris and Hayashi (2008) as underlying the lithocap and immediately overlying the porphyry style mineralization at one of the discoveries at Oyu Tolgoi. The significance of this type of alteration at Sunnyside suggests a potential for near surface mineralization to exist within the wide spaced drilling of the Sunnyside system, particularly on the western edge of the historical drilling (see Figure 4).

7.4.3 Chalcocite Enrichment Zone Targets

Above the copper-moly porphyry, phyllic alteration gives way to advanced argillic alteration hosting poorly delineated zones of chalcocite-enargite mineralization. The zoned chalcocite "blankets" appear related to the breccia pipes that may emanate from the same source. Breccia pipes occur above and adjacent to the porphyry mineralization at depth. The breccia pipes are often mineralized with copper, molybdenum, silver and gold although these bodies have not been thoroughly evaluated (see Table 1 for typical chalcocite mineralization intercepts).

7.4.4 Skarn Targets

Laterally to the east and north retrograde skarn alteration hosting massive sulfide mineralization occurs within Paleozoic sediments composed of shale and limestone. The skarn mineralization is believed to be coincident with the adjacent QFP intrusive and copper porphyry mineralization. The skarn mineralization is composed of zinc, lead, silver, copper and molybdenum (and elevated beryllium and rhenium).

Historically, silver and base-metal mineralization has been mined adjacent to (northwest of) the Sunnyside Property at the Flux Canyon Mine (Figure 2). Base metal mineralization adjacent to porphyry copper mineralizing systems is well known and forms part of the model of mineralization (see Figure 5). In addition, significant skarn mineralization was identified in several of the historical drillholes at the Property at significant depths. These deep skarn intersections are believed to be hosted by Devonian to Mississippian calcareous rocks. However, the limestone and shale are highly altered to marble, hornfels and retrograde skarn. Bedding is present within the marble and hornfels beds suggesting a relatively passive replacement, but very little of the original rock remains.

Skarn mineralization has been encountered in historic drilling at depths below surface ranging from 3750 feet to 5220 feet in holes TCH-1, TCH-2, TCH-2A, and TM-13 (see Table 2). The author of this report examined core from drillhole TCH-2 that exhibited massive to semi-massive base metal sulphide mineralization with dark ("blackjack") sphalerite (up to 50%) with patchy (up to 10-15%) chalcopyrite and lesser (5-10%) galena is a green garnet skarn with bedding almost completely obscured but presumably represented by banding/layering in the sulphides (observed to be ~perpendicular to core axis). From the historical drillhole interections, the lateral extent of the Skarn target and known skarn-type mineralization is up to 1000 feet in both N-S and E-W directions.

Other Potential Targets

Disseminated Cu-Ag-Mo+/-Au mineralization has been recognized within the Sunnyside diatreme, but was considered to be too low grade to exploit. Recent mining ventures (i.e. Peñasquito, MX and Montana Tunnels, MT) have redefined the potential for this type of mineralization. The relatively few and widely spaced holes within the diatreme indicate significant dispersion of copper, lead, zinc and silver throughout portions of the diatreme. However, gold values were rarely assayed within the diatreme. Further work needs to be completed on the diatreme target in order to determine its potential.

Other possible areas of porphyry type mineralization are theorized for the southern portion of the property. This area hosts numerous breccia pipes with associated vein mineralization and wide spread advanced argillic alteration. The southern area exhibits many of the same alteration traits as the Ventura and Sunnyside systems. These alteration traits associated with local areas of surface copper and molybdenum mineralization and elevated copper within a Kerr-McGee hole over its length suggest potential for discovery of additional porphyry mineralization. Additional mineralized systems known to occur within and adjacent to the project area include the Red Mountain porphyry copper system (Corn, 1975) approximately 3 kilometers to the north of the property, Ventura porphyry copper-molybdenum system immediately adjacent to the western edge of the property, and the Four Metals porphyry system approximately 4 kilometers south of the property boundary (see Figure 2). Additionally, disseminated silver is hosted in Paleozoic sediments about 1 kilometer to the east at the Hardshell mine and approximately 5 kilometers southeast at the Mowry Mine. This mineralization is believed to be a distal product of the Red Mountain and Sunnyside systems. Production from skarn zones also occurred at Washington Camp approximately 8 kilometers from the southeast portion of the claim block. The Washington Camp mineralization is believed to be related to a 74 Ma intrusion.

This nested group of copper porphyries was identified by a comprehensive exploration program that included geologic mapping, geochemical sampling and historic drill programs over the last 60 years. Although most have historical geological resources quoted in publications by the U.S. Geological Survey (Singer, *et al.*, 2005), Arizona Geological Society by Graybeal (2007), and Society of Economic Geology (Graybeal, 1996, 2010), no NI 43-101 compliant mineral resources have yet been defined.

8.0 DEPOSIT TYPES

Regal Resources is currently evaluating the Sunnyside Project for various styles of mineralization that are related to a classical Porphyry Cu deposit model (see Figure 9 from Sillitoe, 2010).

From its recent work compiling historical drill data, geologic mapping and conducting resampling, re-logging and new sampling of previously unsampled core, Regal has identified three (3) distinct styles of mineralization (targets) that warrant further examination. These targets are described in detail in the preceding section of this report and include true porphyry copper (+/- molybdenum) mineralization, chalcocite (+/enargite) enrichment zones and breccias, as well as adjacent base metal skarn mineralization.

The main porphyry target at Sunnyside is located in the north central portion of the Property. The deep porphyry system was identified by historical drilling. The target area has a lateral extent of some 4000 feet (~1200m) in and E-W direction and 5000 feet (~1500m) in a N-S direction (Figure 8B). The deep porphyry target comprises an inverted cone (dome) of porphyry copper-molybdenum mineralization that has been identified by drilling starting at depths of approximately 3700 feet (~1100m) below surface and extending at least 2700 feet (~800m+) further in depth. Although these

depths are beyond that normally considered to be economically viable for the open pit mining method, porphyry-style mineralization at such depths (depending on many factors affecting economics) can be amenable to a large–scale underground mining process known as block-caving (see the Adjacent Properties section of this report for a discussion of potential deposit analogs).

In addition, the presence of gusano (or "wormy" or "patchy") texture alteration at Sunnyside, particularly evident in the vicinity of the old Sunnyside mine (see Figure 2) adjacent to drillhole TR-11, is indicative of a potential for identifying porphyry copper mineralization closer to the surface, particularly nearer the western portion of the Property. Gusano alteration comprises patchy (wormy looking) quartz-pyrophyllite-alunite alteration in the lithocap overlying major porphyry systems around the world and normally occurs in the transition zone between the porphyry and the epithermal systems.

Above the copper-moly porphyry, phyllic alteration gives way to advanced argillic alteration hosting presently poorly delineated zones of chalcocite-enargite mineralization. The zoned chalcocite "blankets" appear related to the abundant breccia pipes occurring in the area. These "pipes" may emanate from the same source (see Figure 7) as breccia pipes occurring above and adjacent to the porphyry mineralization at depth. The breccia pipes are often mineralized with copper, molybdenum, silver and gold although these bodies have not been thoroughly evaluated. Although the chalcocite "blankets" have been identified by drilling over a large area, the wide spaced drilling will require considerable infilling in order to reasonably establish continuity.

Laterally (to the east and north) retrograde skarn alteration hosts massive sulfide mineralization within Paleozoic sediments composed of shale and limestone. The skarn mineralization is believed to be coincident with the adjacent QFP intrusive and copper porphyry mineralization. The skarn mineralization includes zinc, lead, silver, copper and molybdenum (and elevated beryllium and rhenium).

Other possible areas of porphyry-type mineralization are presumed to underlie the southern portions of the property. This area hosts numerous breccia pipes with associated vein mineralization and wide spread advanced argillic alteration. The southern area exhibits many of the same alteration traits as the Ventura and Sunnyside systems. These alteration traits associated with local areas of surface copper and molybdenum mineralization and elevated copper within a Kerr-McGee hole over its length suggest potential for discovery of additional porphyry mineralization.

Additional potential exists for the discovery of disseminated silver and/or gold mineralization within the advanced argillic zone and as quartz vein mineralization hosted in Cretaceous volcanic and sedimentary rocks.

Asarco and Noranda identified a porphyry copper-molybdenum system along the northwestern portion of the project area. Although the bulk of the Ventura system lies within unpatented mining claims currently controlled by Asarco, it is believed that additional potential lies within Regal's property position along trend and immediately adjacent to Asarco's drilling (see the Adjacent Properties section of this report).

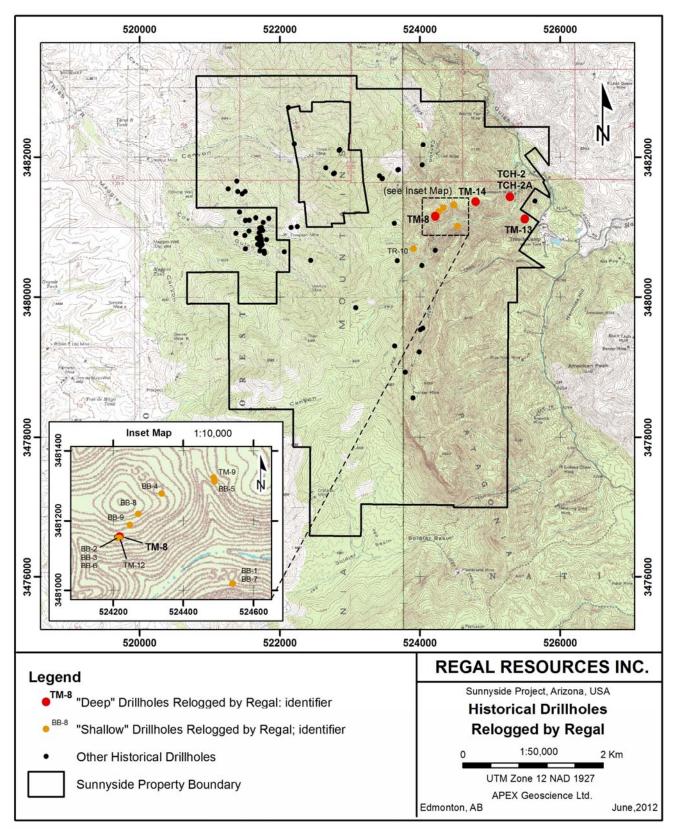
9.0 EXPLORATION

Regal Resources has been active on the Sunnyside Project since its acquisition in 2010. Regal's exploration efforts have focused on data compilation, confirmation of historic sampling and mapping, and target evaluation. The compilation work was conducted by personnel with MinQuest, who were retained by Regal as geological consultants.

Data compilation included acquiring and digitizing surface geochemical data including rock chip samples from the files of the U.S. Bureau of Mines (Chatman, 1994), the Arizona Department of Mines and Mineral Resources, and historical exploration reports (largely unpublished) produced by companies such as ASARCO, Anaconda, Kerr-McGee) West Range (now Xstrata) and Rio Algom. More importantly, Regal has located and acquired a considerable amount of the drill core that remains from historical drilling completed at the project. This compilation effort, which included the re-logging and sampling of many of these drill cores, has confirmed historical findings and provided additional data that has allowed for the refinement of the geological model at Sunnyside and the mineralization targets that are discussed in the Conclusions and Recommendations sections of this report as the focus for future exploration at the Project.

9.1 Regional Geophysical Data

Fritz Geophysics (Fritz, 2007) evaluated and interpreted all public domain geophysical data available for the Property area in 2007 for MinQuest. This data was obtained from a U.S. Geological Survey project conducted in 1997 by Sial Geosciences, Inc. Unfortunately, the available regional-scale gravity and airborne magnetics data was not sufficiently detailed to support any significant conclusions with respect to the mineral potential of the Sunnyside Property area.


9.2 Historical Drill Core and Drill Data

Regal has located and acquired a considerable amount of the drill core that remains from historical drilling completed at the project. A detailed program of cataloguing, logging (re-logging), photographing, and re-assaying of the available historic drill core was completed during the first half of 2011. Summaries of the historical exploration programs that resulted in the production of this drill core are provided in the "History" section of this report. Logging and reinterpretation of the previous drilling has confirmed and refined the target concepts being advanced by Regal. Regal Resources has (re-) logged five deep core holes at Sunnyside to focus on stratigraphy and alteration of the system. Locations for the five holes are shown on Figure 10.

Along with the re-logging of the five (5) deeper historical drillholes completed on the Property, Regal has completed an evaluation of drill logs and core from 20(+) other historical drillholes. The detailed evaluation of the five (5) key drillholes has provide a consistent nomenclature that has been applied to the other drillholes, all of which were the result of multiple drilling (and logging) programs completed by different workers and were difficult to compile previously without this common framework. In the opinion of the author, this is the most significant outcome from the recent work completed by MinQuest on behalf of Regal and has resulted in an interpretive cross-section that illustrates the geological potential of the Property and provides an excellent geological model for the Property that can be used as a guide for future exploration. The location of the interpretive cross-section is illustrated in Figure 11 and the cross-section itself is illustrated in Figure 12.

Since 2011, Regal has collected some 367 samples of historical drill core, 76 of which represent intervals that were not previously sampled. Initially, 184 samples were collected from drillholes BB-2, 3. 4 and 6, TM-13 and 14 and TCH2A. Later, an additional 183 samples was collected from drillholes TM-13, TCH-2 and TCH-2A. The locations of the drillholes from which Regal has collected geochemical samples is illustrated in Figure 13 and detailed results are provided in Appendix 2 and are summarized below (see Tables 1 and 2).

Initially selected 78 samples from historic core holes drilled within the chalcocite target area for re-sampling and re-assaying (drillholes BB-2, 3, 4 and 6). The core holes are located in the northeastern portion of the project area. Samples were collected from core along the same intervals as historic assays. The new samples were submitted to Skyline Labs in Tucson, Arizona. The historic core sampling results of the Chalcocite Target were confirmed by the recent reassays conducted by Regal indicating significant intervals of copper and silver mineralization.

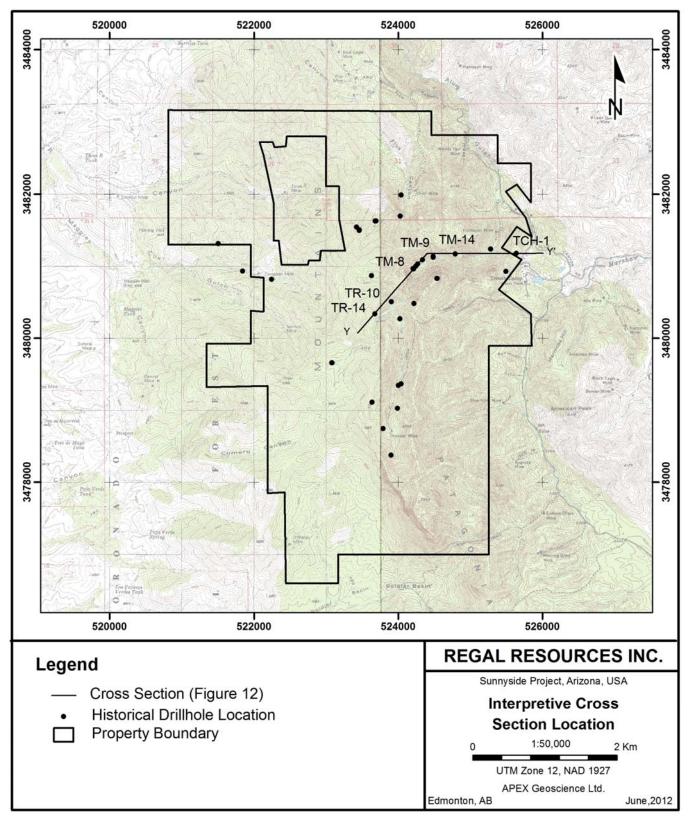
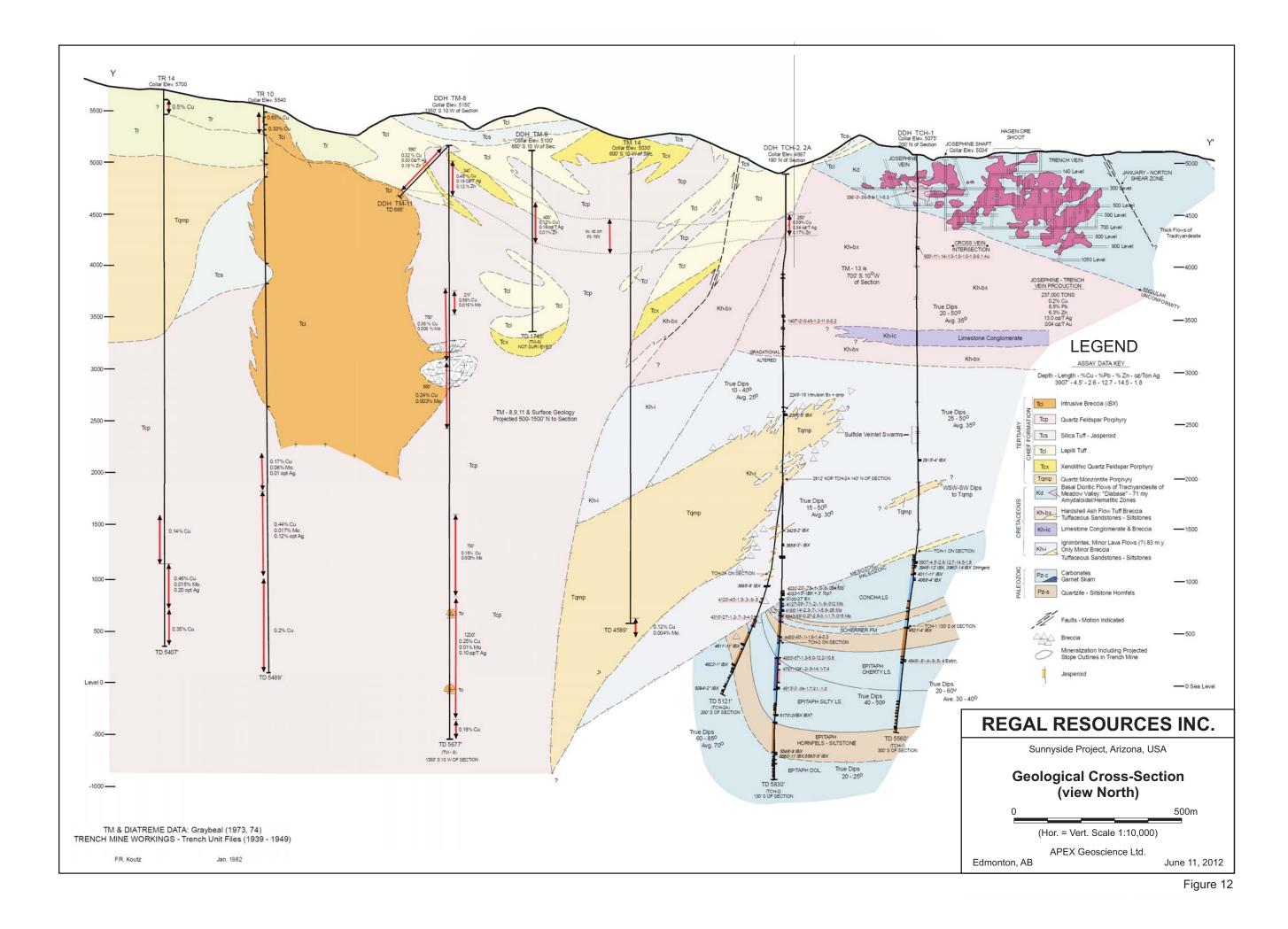
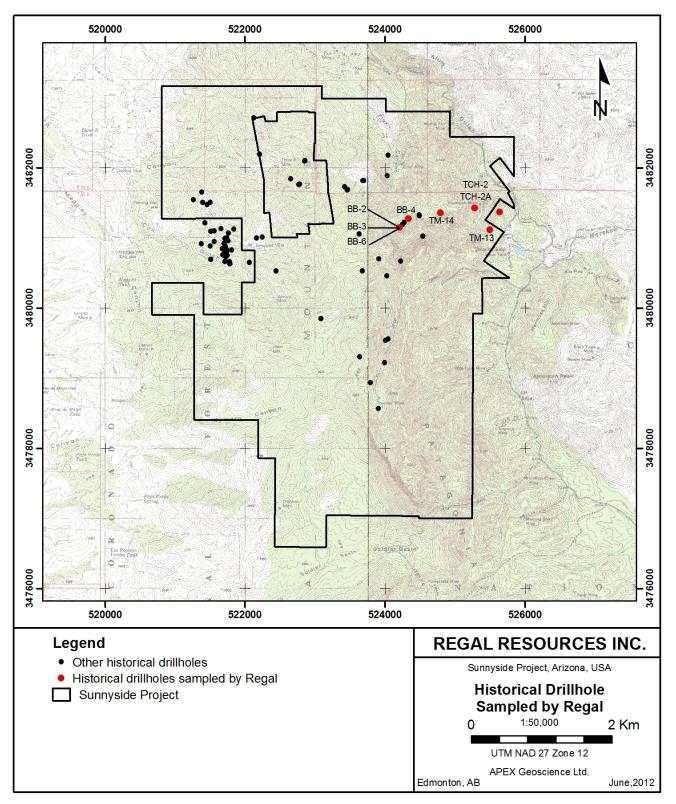




Figure 11.

Hole ID	From	То	Interval	Cu (%)		Ag (g/t)				
	(m)	(m)	(m)	(Historical)	(Regal)	(Historical)	(Regal)			
BB - 2	12.20	42.68	30.48	0.47	0.45	2.2	4.4			
BB - 3	4.27	27.44	23.17	0.60	0.27	0.8	4.9			
BB - 3	182.93	219.51	36.58	0.32	0.32	2.0	3.2			
BB - 4	3.90	57.93	54.03	0.46	0.45	2.1	3.6			
BB - 6	6.10	36.59	30.49	0.32	0.34	4.2	8.6			
BB - 6	91.46	149.39	57.93	0.64	0.82	4.6	12.8			

Table 1. Sunnyside Chalcocite Target Confirmation Analyses.

Table 2. Sunnyside Skarn Target Confirmation Analyses.

Hole ID	From	То	Interval	Cu	Pb	Zn	Ag	Source
	(m)	(m)	(m)	(%)	(%)	(%)	(oz/ton)	
TCH-2	1418.25	1435.63	17.37	1.20	4.97	12.15	11.00	ASARCO - Historic
			(57ft)	1.17	4.27	10.70	9.86	REGAL (new)
	1453.00	1490.79	37.79	0.23	0.98	14.08	7.36	ASARCO - Historic
			(124ft)	0.23	0.91	13.58	7.36	REGAL (new)
TCH-2A	1255.79	1267.98	12.19	1.48	0.30	0.60	2.20	ASARCO - Historic
			(40ft)	1.42	0.26	0.58	2.41	REGAL (new)

The results of this work confirmed that historically reported grades and thicknesses of mineralization exist in both the skarn zone and at least two significant zones of chalcocite-rich mineralization. Three of the drill holes testing the chalcocite were fanned from a single site (angled at -45 degrees at declinations of Due North, due east and south 45 degrees west). The three holes (BB 2, 3 and 6) diverged at depth while the fourth hole (BB 4) was located at least 183 meters (600 feet) further north. True thickness is presently unknown.

These historic vs. new assays reveal a remarkable consistency and repeatability for the copper assays. While silver assays are generally higher from the recent re-assay program, the range of silver values within mineralized zones is confirmed. These limited results suggest that historic assays from the Patagonia project are reliable and likely to be repeated by subsequent drilling or re-assaying.

In addition to the Cu and Ag values summarized above, the recent re-sampling of some historic drilling and surface samples indicate potential for low grade rare earth, rhenium and bismuth mineralization. The lanthanide elements are enriched in several areas of drilling and are occasionally present in surface sampling. Although poorly understood, these elements should be further studied for near surface potential. Bismuth is intimately associated with the massive sulfide portion of the skarn and should be evaluated in future drill programs. Rhenium is present with high molybdenum values where assayed.

9.3 Author's Property Visit and Samples

The author of this report visited the Sunnyside Property on April 25 and 26, 2012, and was shown around the property by Mr. Herb Duerr of MinQuest. The main area examined was the northeastern portion of the property (in the vicinity of historical drillholes TM-8, TR-10 and TR-11), which overlies the deep porphyry target and portions of the eastern shallower chalcocite enrichment target. Also examined were portions of the southern part of the property where several breccia pipes occur in the host batholiths.

In summary, the author observed extensive evidence of a significant hydrothermal alteration system at the Sunnyside Property including silicification and variable amount of the typical porphyry system alteration assemblages (potassic, argillic and advanced argillic). Alteration was observed in outcrops of almost all lithologies, including QFPs and the large lapilli tuff or diatreme unit. A total of 6 rock grab samples was collected by the author from outcrops at the Property including samples of diatreme with visible copper staining (12ATP001) as well as preserved sulphide mineralogy – although the majority of the surface outcrops examined were found to be leached of sulphide minerals. The samples were sent to ALS Minerals in Reno, Nevada for mutil-element analysis. Sample locations and descriptions are provided in Table 4 and geochemical summary is provided in Table 5. The author's samples are illustrated in Figure 14 and the analytical certificate for these samples is provided in (Appendix 3).

Sample 12ATP001 comprising outcrop material adjacent to an historical shaft known as the "Volcano Mine" located adjacent (above) the old Sunnyside Mine waste dump. At this locale, copper oxide mineralization was apparent and the sample returned a value of 1.63%Cu.

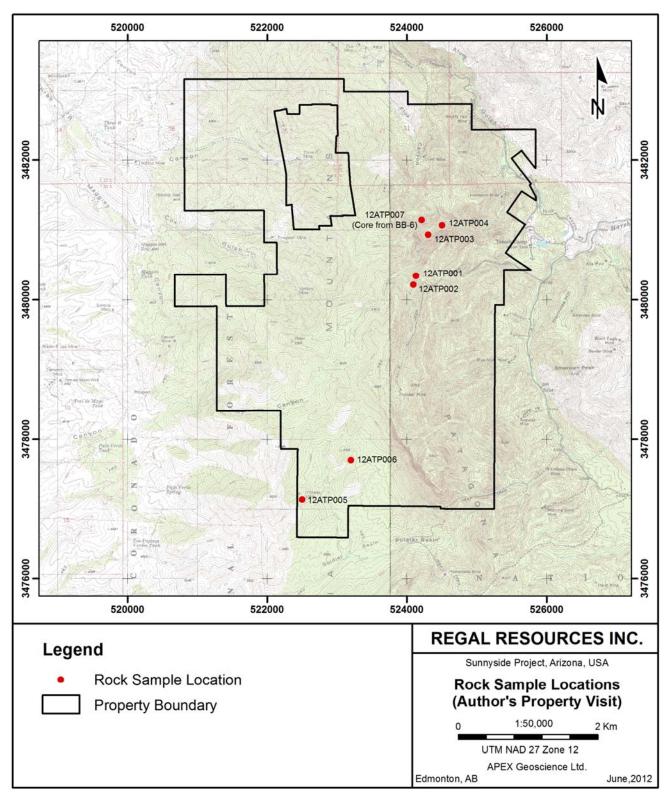


Figure 14.

Sample	UTM N	UTM NAD 27 (Conus)		Material	Disposition	Date	Description
ID	East(m)	North (m)	Zone	Sampled		Collected	
12ATP001	524131	3480350	12	Cu oxides on outcrop betside "Vocano" mine - historical w orkings (vert shaft)	outcrop	25-Apr-12	outcrop of coarse quartz monzonite porphyry breccia (diatreme?) w ith 1- 10cm scale clasts in a fine grained matric w ith copper oxides on surface, exhibits silicifiaction.
12ATP002	524097	3480221	12	sulphide-bearing rock in outcrop beside TR- 14 pad	outcrop	25-Apr-12	5m x 10m patch of apparently preserved promary sulphide mineralized outcrop of silicified quartz-feldspar porphyry breaccia (diatreme) with 1-2% very finely diseminated py/cpy?
12ATP003	524305	3480937	12	Feldspar porphyry at the top of "Humbolt Canyon"	outcrop	25-Apr-12	w eakly clay altered quartz-feldspar porphyry outcrops with abundant 30-40% 2-4mm w hite feldsaps and 20-30% 3-5mm iregular "quartz- eyes" in a fine grained (It to med) grey matrix.
12ATP004	524506	3481072	12	dark grey quartz veins in o/c along "Humbold Canyon" Rd	outcrop	25-Apr-12	~1.5m w ide zone of near vertical .5- 5cm silica+very fine grained grey- black sulphide veins comprising up to 505 0f the rock in QFP - "epithermal-looking"
12ATP005	522503	3477137	12	sulphide-bearing rock on dump at "O'Mara" vein historical workings (vert shaft)	w aste dump	26-Apr-12	coarse grey quartz (vein) material, moderately w eathered w ith up to 20% coarse py and 10-15% spalerite>galena
12ATP006	523203	3477702	12	sulphide-bearing rock in small dump at historical w orkings (adit)	w aste dump		5-10% coarse pyrite in siliceous QFP - breccia pipe?
12ATP007	Tucson co	ore storage f	acility	previously sampled (quartered) drill core (BB-6, box 46, 406')	drill core	26-Apr-12	It-grey, argillic/advanced argillic altered QFP breccia (diatreme?) w ith 1-2% fine black chalcocite spots.

Table 4.	Rock and Core	Sample Descriptions	– Author's Property Visit.

Sam ple	Au	Ag	Cu	Pb	Zn	As	Bi	Sb
ID	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
12ATP001	0.072	8.1	16300	156	4	106	12	45
12ATP002	0.007	1.8	153	495	929	54	10	22
12ATP003	0.005	1	39	81	43	46	7	18
12ATP004	0.154	2.5	237	107	41	29	4	9
12ATP005	3.37	425	14950	25400	1085	959	1320	3200
12ATP006	0.009	1.7	59	104	15	11	3	21
12ATP007	0.046	7.4	11950	43	268	3670	9	193

Table 5. Summary of Rock and Core Sample Analytical Results - Author's Property Visit.

In addition to the field visit, the author was provided access to Regal's core storage facility in Tucson where core samples from several key drillholes were examined. The cores examined by the author are listed in Table 6. The author collected one (1) sample of chalcocite mineralized diatreme (QFP auto-breccia?) for confirmation purposes. This sample (12ATP007) yielded a result of 1.20% Cu and was collected from drill hole BB-6 at approximately 406' within the chalcocite target zone.

Drillhole	Core Inte	erval	Basic	Mineralization
	From	То	Lithologies	or Target Zone
BB-6	400'	460'	Diatreme	chalcocite
TCH-2	4647'	4694'	Green Garnet skarn	deep skarn
TR-10	3350'	5486'	various, abundant QMP	porphyry
	skeleton	ized (partia	l) core	
TR-11	2275'	5470'	various, abundant QMP	porphyry
	skeleton	ized (partia	l) core	
SU-1	0'	700'	various	shallow chalcocite
SU-3	0'	450'	various	shallow chalcocite

Table 6. Drill Core Examined By The Author.

The historical drill cores in the storage facility were found to be in very good condition. The core boxes were in good condition and were clearly labeled. The lithologies and depths of the actual core were found to be consistent with historical logs, although it was clear that the re-logging completed by Regal had provided additional details and provided a much needed review that allowed for a consistent naming of key lithologies and their alteration zones that has allowed Regal to make sense of drill logs produced by different geologists through 3-4 different drilling campaigns.

In short, in outcrop and in drill core, the author of this report observed evidence for a very large hydrothermal system that has produced moderate to intense alteration to a

very large package of intrusive, volcanic and sedimentary rocks at the Sunnyside Project. The author examined core from drillholes that had intersected portions of all three of the proposed targets at the property (shallow and deep porphyry, deep skarn and shallow chalcocite enrichment) and observed secondary copper mineralization at surface.

10.0 DRILLING

To date, there has been no drilling conducted on any of the Sunnyside Property by Regal Resources Inc. Historical drilling is discussed elsewhere in this report.

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

Core handling and sampling procedures are not well documented in historical reports from the Property. As a result, the exact procedures followed by previous operators are not well known. However, all the previous companies who conducted drilling at the project (Anaconda, Kerr-McGee, West Range and Asarco) were respected major mineral exploration and/or mining companies and thus it is likely that their respective core handling and sampling methodologies would at least have met industry standards at the time of the work. From the inspection conducted by the author of the core that remains from historical work at the Tucson storage facility, it is evident that the handling and storage of the available core over the last 40 years was carried out professionally and, in particular, the author was impressed by the work that MinQuest (on behalf of Regal) has done to organize the remaining drill cores. Core boxes were observed by the author to be clearly labeled and well organized and were generally found to be in very good condition.

MinQuest personnel, on behalf of Regal, utilized the following procedure in 2010-11 in order to complete the re-logging and re-sampling (plus initial sampling of previously un-sampled cores) and assaying the historical drill core. The core was initially logged, photographed and catalogued in order to conduct a comparison with historical records and determine the intervals, if any, that had previously been sampled. The goal of the sampling program was to re-sample previously sampled intervals (check sampling) and to conduct initial sampling of previously un-sampled intervals. Sample intervals were split in half with one part being placed in a sample sack and the other being returned to the core box. Both were returned to the storage facility. The bagged samples were shipped by truck to Skyline Labs in Tucson, Arizona. (Skyline holds ISO 9001:2000 certification). Skyline is an independent, commercial laboratory, and holds no relationship with Regal, MinQuest or APEX.

The samples were crushed and a 1000g split was pulverized at the laboratory. Aliquots of the pulped sample were then analyzed for Au by way of a 30 gram fire assays and for 49 additional elements by ICP (Inductively Couple Plasma spectrometry, with 3 acid digestion). Follow-up analyses were completed on any "over limit" analyses with the exception of manganese. Additional repeat samples, blanks and standards were also used within the lab, according to the internal practices and policies of Skyline. No other QA/QC procedures were implemented by MinQuest during the 2010 core re-sampling program. The pulps and rejects for the samples were returned to Regal for potential future analysis and are held at the secure storage facility in Tucson, AZ, along with the rest of the historical drill core.

The author is not aware of any issues regarding the 2010 Sunnyside historical core sampling/re-sampling program that may have introduced any sample bias or that may have otherwise adversely affected the accuracy and/or reliability of the results. It is the author's opinion that the sample preparation, security and procedures utilized by MinQuest, on behalf of Regal, were adequate to insure a reasonable level of accuracy and reliability.

12.0 DATA VERIFICATION

Geological information with respect to the Sunnyside Project has been compiled from available public and private sources. The author examined and reviewed all available drill data, geologic maps and interpretive reports from previous workers at Sunnyside. This information consists of data accumulated from at least 6 separate exploration groups over a period of some 60 years. As previously discussed, the majority of this data was generated by respected major mineral exploration and/or mining companies (Anaconda, Kerr-McGee, West Range and Asarco) and thus it is likely that their respective procedures and methodologies would have at least met industry standards at the time of the work. In addition, the information resulting from the historical work on the property is consistently reported by the various companies over the years.

Observations made by the author during the recent April 2012 site visit provided additional assurance that historical information was accurate in as much as roads and drill sites matched those shown on available maps and reports. The author personally examined the northern and southern portions of the property and observed significant zones of hydrothermal alteration (phyllic to advanced argillic), consistent with the presence of porphyry-style mineralization, associated with intrusive rocks including QFP's, breccias pipes and the diatreme unit. An examination of core from several historic drillholes was also conducted by the author that confirmed the presences of

skarn and porphyry style mineralization at depth as well as the presence of shallower chalcocite enrichment.

With respect to the recent core resampling program conducted by Regal, the author was provided with several analytical certificates that were used to check the resulting database and no issues were identified.

In addition, the author collected six (6) rock grab samples and one (1) piece of drill core that further confirmed the presence of mineralization (see Figure 14). Descriptions of the samples collected by the author are presented in Table 4 and analytical certificates are appended to this report (Appendix 3). Table 5 summarises the analytical results of the 2012 'property visit' samples. Briefly, the samples confirmed the presence of copper mineralization on surface and in drill core (samples 12ATP001 and 007, respectively). Of note was sample 12ATP005 that comprised a sample of sulphide bearing material from the small past producing O'Mara vein located in the south side of the Property that contained elevated Au, Ag, Cu, Pb, Zn, As, Bi and Sb and thus geochemically resembles a classic epithermal vein metal assemblage.

The historical drill cores in the storage facility were found to be in very good condition. The core boxes were in good condition and were clearly labeled. The lithologies and depths of the actual core were found to be consistent with historical logs, although it was clear that the re-logging completed by Regal had provided additional details and provided a much needed review that allowed for a consistent naming of key lithologies and their alteration zones that has allowed Regal to make sense of drill logs produced by different geologists through 3-4 different drilling campaigns.

In short, in outcrop and in drill core, the author of this report observed evidence for a very large hydrothermal system that has produced moderate to intense alteration to a very large package of intrusive, volcanic and sedimentary rocks at the Sunnyside Project. The author examined core from drillholes that had intersected portions of all three of the proposed targets at the property (shallow and deep porphyry, deep skarn and shallow chalcocite enrichment) and observed secondary copper mineralization at surface.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

Copper from Cu-oxide minerals is normally easily liberated by weak acid solution and copper sulphide minerals are normally liberated and concentrated by standard milling and floatation techniques. However, copper from supergene enrichment zones, which often involves chalcocite (Cu₂S) mineralization, can be problematic. ASARCO completed limited metallurgical tests on samples from three holes (BB 2-4) with mainly chalcocite zone mineralization in 1991. These tests indicated limited recovery of the copper using a ferric-acid leach (average recoveries ranged from 20% to 42%). This information, combined with the relatively low average grades (0.37% copper) and low metal prices at the time, provided the company with a reason to drop the project (unpublished memo residing within the Arizona Geological Survey, Patagonia, Arizona files).

Regal completed limited metallurgical testing on selected intervals of core from the chalcocite enrichment zones overlying the Sunnyside porphyry Cu system. A sequential leach test was performed using dilute sulfuric acid followed by dilute cyanide. These results indicate an average recovery for Cu of 88% for holes BB 2, 3, 4 and 6. The Cu recoveries were the same for the near surface as they were for the deeper mineralization.

The sequential leach tests were performed by Skyline Labs of Tucson, Arizona to determine leachability of the chalcocite and other copper species. Skyline is an international standard ISO/IEC 17025:2005 accredited lab. An initial total copper content was determined by Atomic Absorption following a near-total digestion of the copper using a three acid process. The sequential copper content was determined by digestion in two steps: 1) with a 5-per-cent sulphuric acid cold solution; and 2) a 10-per-cent sodium cyanide digestion of the residue of step 1. Solutions from each step were analyzed by atomic absorption. The sum of these two analyses compared to the total copper content is an indicator of the leachable copper content of the sample. A summary of these tests results is provided below in Table 7.

Sulfuric acid leaching recovers most of the copper oxide species while the cyanide leach recovers much of the chalcocite copper. A total copper content is used to calculate the recovery (%Rec). Based on the previous total copper values (TCu), Table 3 provides recovery of oxide copper (Cuas) and chalcocite (Cucn) along with total recovered copper (CuRec) from the leach process. The %Rec column is calculated by dividing CuRec by TCu.

Table 7	Table 7. Summary Sequential Leach Testing Data For Chalcocite Target Samples.								
DH ID	From	То	Interval	TCu	Cuas	Cucn	CuRec	%Rec	
BB - 2	12 m	43 m	31 m	0.45 %	0.07 %	0.30 %	0.37 %	83%	
BB - 3	4 m	27 m	23 m	0.26 %	0.04 %	0.20 %	0.24 %	94%	
BB - 3	183 m	219 m	36 m	0.32 %	0.07 %	0.20 %	0.27 %	86%	
BB - 4	4 m	58 m	54 m	0.43 %	0.09 %	0.31 %	0.40 %	93%	
BB - 6	6 m	37 m	31 m	0.34 %	0.05 %	0.23 %	0.28 %	82%	
BB - 6	91 m	149 m	57 m	0.82 %	0.08 %	0.65 %	0.73 %	89%	

A complete tabulation of Skyline's metallurgical test results are shown in Appendix 4.

The author did not examine remaining core from holes BB2-4. However, the author did examine core samples from the chalcocite zone in drillhole BB-6. In the opinion of the author, there was nothing visually unusual about the chalcocite mineralized material observed in hole BB-6 and thus there was nothing to suggest that these samples are not representative of chalcocite enrichment zone mineralization at the Property.

In addition to the chalcocite mineralization, ASARCO completed a limited metallurgical test on the skarn mineralization (unpublished memo residing within the Arizona Geological Survey, Patagonia, Arizona files). A limited examination of 2 zones of mineralization located within hole TCH-2 indicate that the majority of the silver reported to a lead concentrate and copper reported to a zinc concentrate. The recovery of the base metals in general was considered to be very good for standard flotation methods. Regal has not confirmed this information with its own tests. The author observed skarn mineralization in core samples that remain from drillhole TCH-2 during the property visit completed in April 2012. The mineralization was observed to be sufficiently coarse grained (sphalerite, chalcopyrite and galena) that liberation and floatation of the individual sulphide minerals should not be difficult. The author did not observe anything that would adversely affect the liberation or recovery of the key commodities, although silver is often not visually apparent and requires more detailed investigation to determine its liberation and concentration characteristics. No significant issues with respect to the liberation and concentration of the key commodities were indicated by the limited metallurgical work completed on the base metal skarn mineralization.

Continued exploration at Sunnyside by Regal will require further metallurgical testwork. If Regal decides to drill the chalcocite enrichment zone target, further testwork will be required to insure the leachability of any copper mineralization intersected. Similarly, if Regal conducts drill testing of the porphyry targets then testing of any mineralization intersected will be required to test the recoverability of mineralization (Cu and/or Mo) intersected.

14.0 MINERAL RESOURCE ESTIMATES

Reliable records are available for work completed by Anaconda, ASARCO, Kerr McGee, Rio Algom and West Range (Graybeal, 1972). Between 1951 and 1993, some 43 drillholes tested the Sunnyside, BX, Bucket, and Skarn targets at the Property. However, due the age and wide-spacing of many of these holes, the Sunnyside Project is considered to be at a relatively early stage of exploration. There are no NI 43-101 compliant mineral resources or reserves outlined at the Project. Several non-compliant historical resource estimations have been completed for the shallow chalcocite and deeper porphyry targets but they are not discussed in this report due a lack of documentation with respect to their calculation.

15.0 ADJACENT PROPERTIES

Adjacent properties are mentioned in previous sections of this report and are described in a little more detail in this section. Adjacent properties, such as the Hermosa Mine, Flux Canyon Mine, 3R Mine, Four Metals property, Ventura property, Red Mountain property and Mowry Mine are identified in Figures 2 and 15, and their historical production is referenced for descriptive purposes only. No inference is made in this report to similarities between the Sunnyside and these adjacent properties described below.

There have been a number of small, past producing mines that have operated historically in the vicinity of the Property, that were mainly active during the early- to mid-1900's. No significant mineral production is occurring immediately adjacent to the Property at this time.

Four Metals Property

The Four Metals Property is currently owned by Columbus Gold Corporation and Herb Duerr. It is located approximately 4 km south of the Property boundary. The Four Metals Property area covers the former Four Metals copper mine that has been explored by a number of mining and exploration companies since the 1960's. Copper mineralization is hosted by a roughly circular 300m diameter breccia pipe intruding granitic rocks. The mineralization consists of supergene enriched chalcocite within a shallow zone, underlain by a larger body of primary pyrite, chalcopyrite and molybdenite. A non-43-101-compliant resource estimate was completed by Cobre Copper in 1991 that estimated a high-grade resource of 7.583 million tons at 0.83% Cu, and a lower-grade global resource estimated at 23.042 million tons at 0.42% Cu (Columbus Gold Corporation website – www.columbusgoldcorp.com).

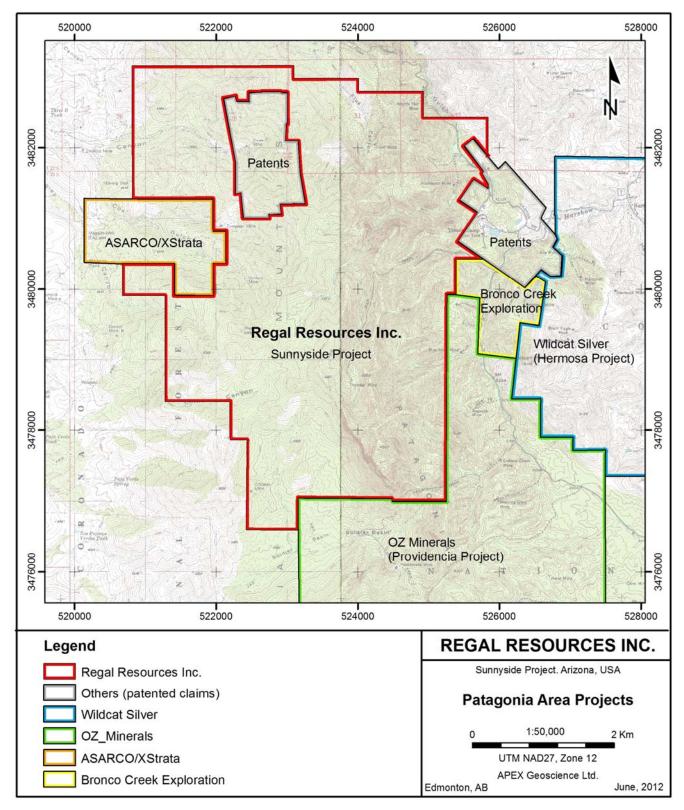


Figure 15.

Red Mountain Area / Patagonia Alunite Property

The Patagonia Alunite Property, owned by North American Potash Developments Inc., is located approximately 4km northeast of the Sunnyside Property. The Patagonia Alunite Property consists of 222 mineral claims located within alunite deposits with high potassium sulphate contents. Earth Sciences Inc. conducted exploration on the property in the 1970's, and calculated a non-"43-101"-compliant resources of 303 million tons (274.876 million tonnes) of mineralized material, averaging 91 million tons (82.553 million tones, or 30%) alunite, or 33 million tons (29.937 million tonnes) aluminum oxide (11.1% alumina). Potassium sulphate from the mineralized material was estimated at 18 million tons (16.329 million tonnes). North American Potash Developments Inc. plans on targeting the economic potential of potassium sulphate and alumina production from this property (North American Potash Developments Inc. website – www.napotash.com).

Providencia Project

Oz Minerals, an Australian mining and mineral exploration company, owns an option to purchase 100% of a package of claims known as the Providencia Project located in Santa Cruz County, Arizona. The Providencia Project lies immediately adjacent to the Sunnyside Property to the south and southeast. Oz Minerals (see Oz Minerals website <u>www.ozminerals.com</u>) has reported that:

"A major porphyry target has been defined, based on geological and alteration mapping, outcropping breccia pipe mineralisation and IP and magnetic data. Previous drilling was restricted to the western margin of this target and comprised two holes returning significant intervals of copper mineralisation. Permitting for the proposed drilling program is well advanced".

Hermosa Silver Project

Wildcat Silver Corporation is a public Canadian mineral exploration company with an 80% interest in the Hermosa Silver Project in Santa Cruz, Arizona (see Wildcat website – <u>www.wildcatsilver.com</u>). The remaining 20% is owned by a private Canadian company, Diamond Hill Investment Company. The Hermosa Project comprises a contiguous block of 8 patented and 251 unpatented claims totaling some 4,877 acres that is located essentially adjacent to the east side of the Sunnyside Project. The Hermosa Project hosts a significant 43-101 compliant silver resource within manto-style silver, manganese, lead, zinc replacement mineralization that occurs at the contact of Paleozoic limestones and overlying Cretaceous sediments. Additional silver mineralization occurs higher up in the Cretaceous volcanics associated with very low levels of base metals. The mineralization occurs as carbonate replacement, veinlets, and fault – fracture infills (Welhener, 2012).

Zone	Туре	Tons (,000)	Ag (opt)	Mn (%)	Zn (%)	Cu (%)	Pb (%)	Contained Ag (oz)
INDICATED								
Manto	Oxide	66,218	2.00	5.99	1.54	0.06	0.93	130,292,400
Upper Silver	Oxide	45,542	0.90	-	-	-	-	40,987,800
Skarn	Sulphide	-	-	-	-	-	-	0
Total		111,760	1.55					171,280,200
INFERRED								
Manto	Oxide	29,985	1.4	6.65	2.22	0.08	1.49	42,464,000
Upper Silver	Oxide	57,973	0.9	-	-	-	-	52,148,700
Skarn	Sulphide	4,212	0.9	4.68	2.31	0.07	1.64	3,982,500
Total		92,170	1.06					98,595,200

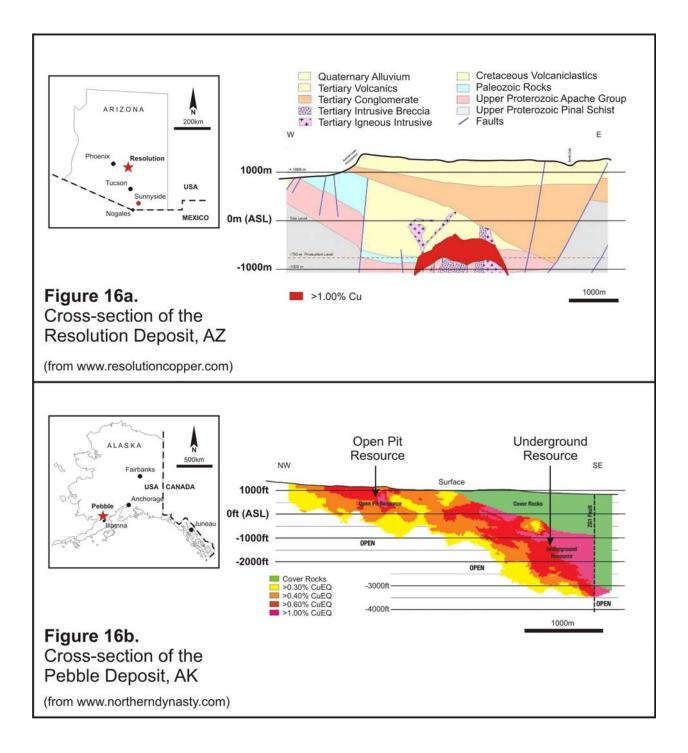
Hermosa Project 2012 Mineral Resource Update

Deep Porphyry Project Analogs

Although recent work completed at the Sunnyside Property by Regal has provided evidence suggestive of shallower porphyry-style mineralization, Regal has also confirmed historical work that identified porphyry Cu mineralization between depths of approximately 4000 feet (~1100m) and 6000 feet (~1800m) below surface. These depths are beyond that normally considered to be economically viable for the open pit mining method. However, porphyry-style mineralization at such depths, depending on many factors affecting economics, can be amenable to a large-scale underground mining process known as block-caving. The following section describes two advanced porphyry Cu deposits that comprise, or include, mineralization occurring at significant depths below surface that are being developed utilizing, or incorporating, the blockcaving mining method. No comparisons are made between these projects and the Sunnyside Project other than those related to depth of mineralization, and no inferences are drawn with respect to the potential size, grade or economic factors, between the projects described below and the Sunnyside Project. That being said, the identification of mineralization of this type is Regals' goal with respect to future exploration of the "deep porphyry" target at the Sunnyside Property.

Resolution Copper Project

The Resolution Copper Project, located approximately 200 km north of the Sunnyside Property east of Superior, Arizona. The project is owned by Resolution Copper, a joint venture between Rio Tinto PLC (55%) and BHP-Billiton PLC (45%) and comprises a large, world class copper resource located more than 2,000 m (6500 feet) below surface (Figure 16a). In 2010, Rio Tinto estimated a 43-101 compliant Inferred Resource of 1.790 billion tons at 1.47% Cu and 0.037% Mo (see Resolution Copper website – www.resolutioncopper.com). An underground mining method is planned that


will include panel caving and possibly block caving (Figure 16a). The project is estimated to produce over 500,000 tons of copper per annum, with production lasting over 40 years. The project is currently in pre-feasibility stage, which is expected to be completed by the end of 2012.

Pebble Project

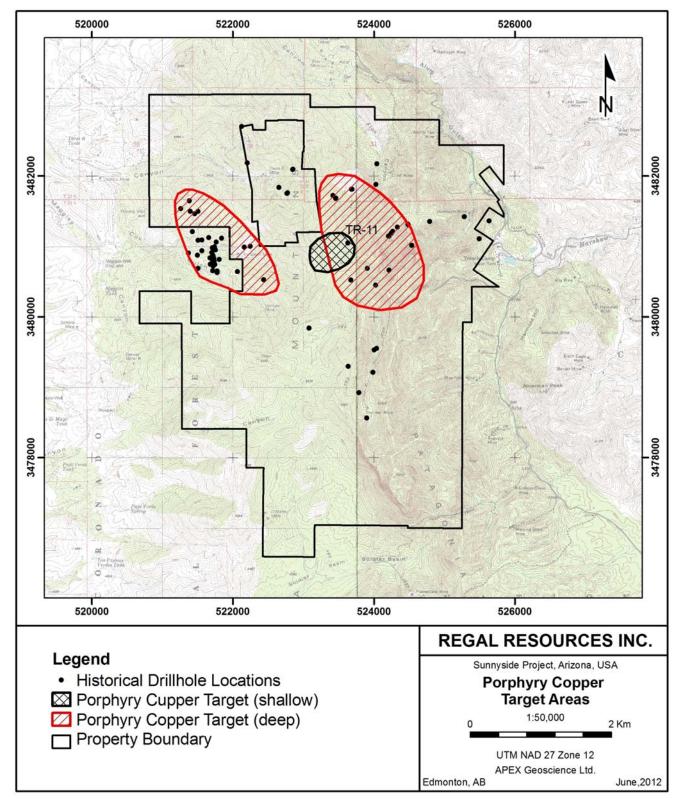
The Pebble Project is owned by the Pebble Partnership, a 50:50 joint venture between Northern Dynasty Minerals Ltd. and Anglo-American PLC. The project is located in Southwest Alaska, some 330km southwest of Anchorage and 30km northwest of the town of Iliamna. The Pebble Project comprises one of the largest concentrations of copper, molybdenum, gold and silver in the world and is currently in the pre-feasibility stage (see the Pebble Partnership link at the Northern Dynasty website www.northerndynastymineral.com). The high-grade eastern section of the porphyry deposit sits approximately 1500 to 2000 m below surface and has the potential for underground bulk mining such as block caving, whereas the lower-grade western part of the deposit is nearer surface and has the potential for open pit mining (Figure 16b). The 43-101 compliant mineral resource estimates for the project include 6.55 billion tons (5.94 billion tonnes) in the indicated and measured categories, at 0.42% Cu, 0.35g/t Au and 250ppm Mo. An additional 5.34 billion tons (4.835 billion tones) lies within the inferred category and averages at 0.24% Cu, 0.26g/t Au and 215ppm Mo. Total contained copper is estimated at 80.6 billion pounds, molybdenum at 5.6 billion pounds and gold at 107.4 million ounces.

16.0 OTHER RELAVENT DATA AND INFORMATION

The authors of this report are not aware of any other relevant information the failure to disclose which would make this report misleading.

17.0 INTERPRETATIONS AND CONCLUSIONS

APEX Geoscience Ltd. ("APEX") was retained by Regal Resources Inc. ("Regal") in April 2012 and was tasked with the completion of a NI43-101 compliant Technical Report on their Sunnyside Project (the "Project" or the "Property"). Regal Resources is a Canadian junior exploration company that is currently seeking to be listed as a Tier 2 Resource Corporation/Company on the TSX Venture Exchange. As a result, and in anticipation of future financing requirements with respect to recommended work, a technical report for the Sunnyside Project is required.


The following is a summary of the review of the Sunnyside Project completed by APEX:

- 1. Geologically, the Sunnyside Project is situated within a broad northwest trending corridor of porphyry copper deposits that straddles the U.S. Mexico border.
- 2. The Project is located in the Patagonia Range of mountains approximately 25km northeast of Nogales, Arizona. The range is cored by a Laramide, multi-phase intrusive complex comprising quartz monzonite to granodiorite and lesser quartz-feldspar porphyry. Radiometric age dates completed by the USGS and others (Graybeal, 2007) suggest the emplacement of the intrusive occurred between 74 and 58 Ma.
- 3. Historical reports, and a site visit performed by the author between April 25 and 26, 2012, confirm the presence of a significant hydrothermal alteration system at (and underlying) the Sunnyside Property. In the opinion of the author, the Sunnyside Property is a "Property of Merit" and a significant exploration program is recommended (see the following section of this report).
- 4. The Sunnyside Project comprises 298 unpatented federal mining claims covering a total of approximately 5,462.9 acres (2210.75 ha) located within Santa Cruz County, Arizona.
- 5. Regal Resources Inc. entered into an "option agreement" with property owner MinQuest, Inc. (MinQuest) of Reno, Nevada, in January 2010. In order to obtain a 100% interest in the Property, less a 3% NSR retained by MinQuest, Regal is required to make a total of US\$810,000 in cash payments, issue 2,000,000 shares to MinQuest and complete a total of US\$25.5 million in exploration expenditures all spread over a 10 year period.
- 6. In February 2012, Regal and MinQuest amended their original "option agreement" such that MinQuest had agreed to sell its interest in the Sunnyside Project to Regal. Under the terms of the "definitive agreement", Regal must pay MinQuest a total of US\$800,000 in exchange for 100% ownership of the Project.

A non-refundable deposit of US\$100,000 was paid to MinQuest with the balance due by the closing date of April 30, 2012. MinQuest will retain a 1.5% NSR.

- 7. The "purchase agreement" was amended on April 30, 2012, such that the nonrefundable deposit was increased to US\$500,000, with a payment of US\$400,000 to MinQuest, and closing date for the payment of the balance of the total US\$800,000 was extended to May 30, 2012.
- 8. The "purchase agreement" was further amended on May 23, 2012, such that the closing date for the payment of the balance of purchase price (US\$300,000) was extended to June 30, 2012.
- 9. In 2010-2011, MinQuest, on behalf of Regal, conducted a significant data compilation and sampling program at Sunnyside. Historical drill cores were acquired, catalogued and re-logged. Some 367 samples were collected from previously sampled and un-sampled drill core. Surface geological mapping was conducted at the Property.
- 10. The new data (geological and geochemical) was compiled and lead to the following conclusions;
 - a. The Sunnyside Project hosts at least one, and possibly other overlapping, porphyry-style alteration systems.
 - b. The Property hosts porphyry copper mineralization that has been intersected in historical drillholes at depths below surface of approximately 3700' (~1100m) below surface and extending at least 2700 feet (~800m+) further in depth. Historical drilling suggests that the "deep" porphyry copper mineralization target is approximately 4000 feet (~1200m) in and E-W direction and 5000 feet (~1500m) in a N-S direction and is located in he north central portion of the property (see Figure 17).
 - c. Recent mapping in the vicinity of the west central portions of the Property have identified "Gusano" alteration, comprising distinct patchy silica-pyrophyllite-alunite development that has been observed at many significant porphyry copper deposits around the world in the lithocaps immediately overlying porphyry systems. As a result, a "shallow" porphyry target has been identified and sits in the vicinity of historical drillhole TR-11 (see Figure 17).
 - d. In addition to the porphyry copper targets, the Property hosts Cu (+/-Ag) in the form of chalcocite enrichment zones at relatively shallow levels. As a result of the recent work completed by Regal, two discreet "chalcocite zone" target areas have been identified in the northwestern and northeastern portions of the Property (Figure 18).

- e. Finally, Historical drilling has intersected significant base metal mineralization in the form of skarns at depth beneath the eastern portions of the Property. Historically, base and precious metal skarns have been mined nearer to surface at several mines adjacent to the Property. As a result, a potential exists for the identification of additional base metal "skarn" mineralization associated with Paleozoic rocks adjacent to the porphyry system at the property (Figure 19).
- 11. The author of this report is not aware of any significant environmental issues that would affect Regal's ability to conduct exploration at the Project.
- 12. There are no NI 43-101 compliant mineral resources or mineral reserves identified at the Property.

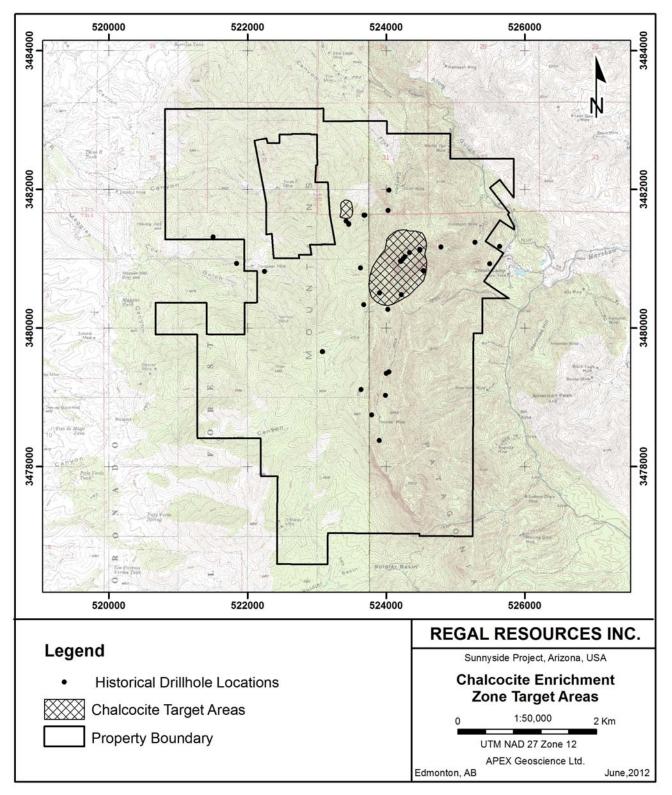
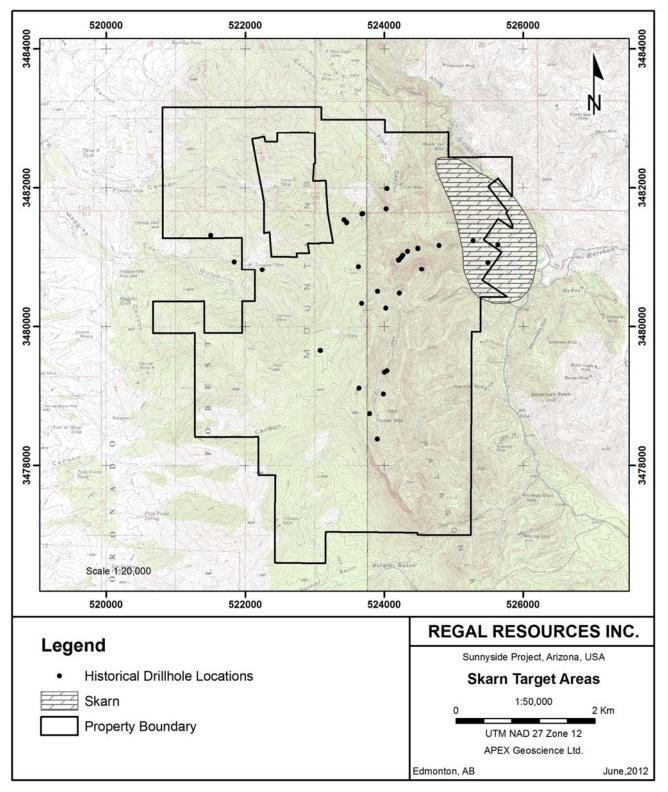



Figure 18.

18.0 **RECOMMENDATIONS**

In the opinion of the author of this report, the results generated by the data compilation and historical drill core re-logging and sampling program recently completed by Regal at the Sunnyside Project are sufficiently encouraging to warrant a significant exploration program. Furthermore, the author was impressed by the extent and degree of alteration observed in outcrops at the Property during a site visit conducted in late April 2012, which clearly indicates that a significant hydrothermal system has affected the rocks underlying the Property.

As discussed in previous sections of this report, the Property hosts compelling shallow (within ~1000m of surface) and deep (below ~1000m of surface) Porphyry Cu-Mo targets. In addition, the property hosts shallow Cu (+/- Ag) targets comprising mineralization associate with abundant breccias pipe systems that have been mapped throughout the Property and secondary chalcocite enrichment zones. Finally, base metal skarn mineralization has been intersected in several deep drillholes located on the northeastern portion of the Property.

In the opinion of the author, the Cu-Mo porphyry and Cu-Ag breccia and chalcocite targets are the most compelling and warrant further exploration. A phased exploration program is recommended. The Phase 1 exploration program would comprise a large soil sampling and ground geophysical program intended to examine the potential for identifying Cu (+/-Ag) mineralization associated with relatively shallow level breccias and/or chalcocite enrichment zones and the shallow Cu porphyry target.

The author recommends the completion of a large array (deeper penetrating) IP (Induced Polarization) survey as part of the Phase 1 exploration program. IP geophysical surveying is a technique that is commonly applied to the exploration of porphyry Cu systems due to its ability to highlight disseminated sulphide minerals associated with this deposit model. Modern survey systems, such as the Titan 24 system used by Quantec Geoscience, have the benefit of being able to penetrate to, and generate data from, significant depths and may even be able to provide information applicable to the targeting of the deep porphyry target at the Property. This is the primary reason for phasing the recommended exploration program as this will allow for the completion of such a deep-penetrating geophysical survey that may provide information to assist in the targeting of drilling to test the deep porphyry Cu target at the Property.


Drill testing of shallow breccias zone, chalcocite and porphyry targets, along with drill testing of the deep porphyry target, comprise the second phase of the recommended

exploration program at the property. Obviously, the lower cost of conducting shallow drilling, combined with the benefits of identifying a potentially open-pitable resource at the property, would lead one to prioritize this effort over deeper drilling. However, a limited deep drilling program is recommended based on the fact that historical drillholes have already identified porphyry copper mineralization at the deep target and thus there exists a significant potential for identifying a potentially economic deposit analogous to that at the Resolution Cu Project, for example, located near Superior, AZ (see the Adjacent Properties section of this report).

In summary, the estimated cost of the Phase 1 soil sampling and geophysical surveying program is approximately **US\$300,000**. The estimated cost of the Phase 2 drilling program is approximately **US\$2,200,000**. As a result, the total cost of the recommended exploration programs at the Property is estimated at **US\$2.5M**. All of the work items listed above are considered by the author to be warranted at this time and none are contingent on the results of any of the others. The porphyry, chalcocite and skarn targets are defined sufficiently at this time to allow for further drill testing. The geophysical and geochemical surveys comprising the Phase 1 program are intended to explore for additional targets on the Property and refine the targeting for a Phase 2 drill program.

APEX Geoscience Ltd.

June 11, 2012

Andrew J. Turner, B.Sc., P.Geol.

19.0 <u>REFERENCES</u>

- AGDC, 1954(?), unpub, geologic data concerning exploration of the Four Metals Hill copper porphyry deposit by Duval Sulfur and Potash Co. (exact title not recorded by researcher): AGDC, document 8040, total pages not recorded.
- ASARCO (1992). Mineral Resource of Thunder Mountain Trench Areas, Patagonia Mountains. American Smelting and Refining Company, Tucson, Arizona, 1p.
- Baker, R.C. (1961), The geology and ore deposits of the southeast portion of the Patagonia Mountains, Santa Cruz County, Arizona: Ann Arbor, University of Michigan, PhD. dissertation.
- Berger, R. Byron, King, T. V, V, Morath, Laurie C., Phillips, Jeffrey D. (2003), Utility of high altitude infrared spectral data in mineral exploration: Application to northern Patagonia Mountains, Arizona: Economic Geology: v98(5):1003-1018
- Brady, Laura M., Gray, Floyd, Wissler, Craig A., Guertin, D. Phillip (2001), Spatial Variability of sediment erosion processes using GIS analysis within watersheds in a historically mined region, Patagonia Mountains, Arizona: USGS OFR 2001-267.
- Carpenter, M.M. (1940), Mine operations in the Patagonia district: Mining Journal: 24(3):3-6.
- Chaffee, R.H. Hill, S.J. Sutley, J.R. Watterson (1981). Regional geochemical studies in the Patagonia Mountains, Santa Cruz County, Arizona. U.S. Geological Survey. Journal of Geochemical Exploration, 14 135-153.
- Chapman, T. L., 1944, 3 "R" Mine, U.S. Bureau of Mines summary report of War Minerals Examination: U.S. Bureau of Mines Mineral Property File 463.2/14143, Intermountain Field Operations Center, P. O. Box 25086, Denver, CO, 80225-0086, 2 p.
- Chatman, M. L., (1994), Mineral Appraisal of Coronado National Forest, Part 7: U.S. Bureau of Mines, MLA 22-94.
- Corn R. M. (1975), Alteration-mineralization zoning, Red Mountain, Arizona: Economic Geology v70-8:1437-447

- Duerr, H. (2010), Report on the Patagonia property, Santa Cruz County, Arizona: Unpublished company report.
- Farnham, L. L., 1953, The Red Mountain copper deposit, Patagonia Mountains mining district, Santa Cruz County, Arizona" U.S. Bureau of Mines DMEA Project 324, Supplemental Examination Report, 19 p., 11 fig., confidential appendix.
- Fritz, F. (2007), Patagonia Project, Santa Cruz County, Arizona Aeromagnetic Data Interpretation: Unpublished company report, 11p.
- Graybeal, F.T. (1972a). Evaluation of Kerr-McGee's Thunder Mountain property, Patagonia Mountains, Arizona. Memorandum to W.L. Kurtz. American Smelting and Refining Company, Tucson, Arizona, 8p.
- Graybeal, F.T. (1972b). Evaluation of the Sunnyside Area, Patagonia Mountains, Santa Cruz County, Arizona. American Smelting and Refining Company, Tucson, Arizona, 8p.
- Graybeal, F.T. (1973). Deep Exploration Possibilities at the Trench Mine, Patagonia Mountains, Arizona. Memorandum to W.L. Kurtz. American Smelting and Refining Company, Tucson, Arizona, 36p.
- Graybeal, F.T. (1974a). Thunder Mountain Project 0042 Monthly Report May 1974. American Smelting and Refining Company, Tucson, Arizona, 16p.
- Graybeal, F.T. (1974b). Thunder Mountain Project 0042 Monthly Report May 1974 (Version 2). American Smelting and Refining Company, Tucson, Arizona, 16p.
- Graybeal, F.T. (1974c). Thunder Mountain Project 0042 Monthly Report December 1974. American Smelting and Refining Company, Tucson, Arizona, 7p.
- Graybeal, F. T. (1975), Geologic map Sunnyside Area, 3R-Thunder Mountain project, Santa Cruz County, Arizona: Private company map.
- Graybeal, F.T. (1976). Thunder Mountain Project 0042 Monthly Report September 1976. American Smelting and Refining Company, Tucson, Arizona, File Memorandum, 5p.

APEX Geoscience Ltd.

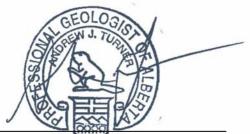
- Graybeal, F.T. (1980). Supplementary Exploration Authorization Request, Three R Project, Santa Cruz County, Arizona June, 1980. American Smelting and Refining Company, Tucson, Arizona, 4p.
- Graybeal, F. T. (1984), Metal Zoning in the Patagonia Mountains, Arizona; *in* Wilkins, Jr. J., ed., Gold and Silver Deposits of the Basin and Range Province, Western USA: Arizona Geological Society Digest, v. 15, p. 187-197.
- Graybeal, F. T. (1996), Sunnyside, A Vertically-Preserved Porphyry Copper System, Patagonia Mountains, Arizona: SEG Newsletter, n. 26, p.1, 10-14.
- Graybeal, F. T., Fleck, R. J., and Vikre, P. G (2005), Multiple Laramide Igneous and Hydrothermal Events in the Patagonia Mountains, Arizona: GSA Abstracts with Programs, v. 37, p. 164.
- Graybeal, F. T. (2007), Geology of the Sunnyside Porphyry Copper System, Patagonia Mountains, Arizona: Arizona Geological Society Ores and Orogenesis Symposium, Tucson, Arizona, Arizona Geological Society Field Trip Guide no. 8, p. 1-14.
- Graybeal, F. T. and Vikre, P. G (2010), A review of silver-rich mineral deposit and their metallogeny: in Goldfarh, Richard J, Marsh, Erin E. and Monecke, Thomas, The Challenge of finding new mineral resources: Global metallogeny, innovative exploration and new discoveries; SEG Special Publication 15, Chapter 7, p. 110.
- Handverger, P. A., 1963, Geology of the Three R Mine, Palmetto Mining District, Santa Cruz County, Arizona: University of Arizona M.S. thesis, 70 p.
- Hayes, P. T., Simons, F. S. and Raup, R. B., 1965, Lower Mesozoic extrusive rocks in southeastern Arizona - the Canelo Hills volcanics: U.S. Geological Survey Bulletin 1194-M, 9 p.
- Hayes, P. T., 1970a, Mesozoic stratigraphy of the Mule and Huachuca Mountains, Arizona: U.S. Geol. Survey Prof. Paper 658-A, 28 p.
- John, David A., editor (2010), Porphyry Copper deposit model: USGS Scientific Investigations Report 2010-5070-B.
- Johnson, A. L., 1963, Four Metals Mine: Arizona Dep. Mineral Resources Field Engineer's Report: ADMMR files, Phoenix, AZ, 1 p.

- Kartchner, W. E., 1944, The geology and ore deposits of a portion of the Harshaw District, Patagonia Mountains, Arizona: University of Arizona Ph.D dissertation, 103 p.
- Keener, H. (1918), The Patagonia District: Arizona Mining Journal, June, 1918;42-43
- Keith, S. B., 1975, Index of mining properties in Santa Cruz County, Arizona: Arizona Bureau of Mines Bulletin 191, 94 p.
- Khashgerel, B.E., Kavalieris, I., Hayashi, K. (2008). Mineralogy, textures, and wholerock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi mineral district, Mongolia; Mineralium Deposita 43:13-932
- Koutz, F.R. (1981a). Monthly Report October 1981, Trench Project (EA 1000) Santa Cruz County Arizona. American Smelting and Refining Company, Tucson, Arizona, 9p.
- Koutz, F.R. (1981b). Report on TR-17, 3R Project, Santa Cruz County, Arizona. American Smelting and Refining Company, Tucson, Arizona, 2p.
- Koutz, F.R. (1982). Drill Hole Summary (0-910') DDH TM-14, Thunder Mountain Project, EA-0042, Santa Cruz County, Arizona. American Smelting and Refining Company, Tucson, Arizona, 4p.
- Koutz, F.R. (1985). 1985 Operations/Geology, Thunder Mountain Project (EA-0042) Santa Cruz Co., AZ. American Smelting and Refining Company, Tucson, Arizona, 4p.
- Koutz, F.R. (1986). 1985-86 Assessment Work Possibilities, Patagonia Mountains, Santa Cruz County, AZ, Jan 23, 1986. American Smelting and Refining Company, Tucson, Arizona, 7p.
- Koutz, F.R. (1988). Annual Report, DDH- TM-14 (3500-3599') Thunder Mountains Project (EA 0042), Santa Cruz County, AZ. American Smelting and Refining Company, Tucson, Arizona, 10p.
- Kurtz, W.L. (1972). Mining Authorization Request, Thunder Mountain Project, Kerr-McGee Joint Venture, Santa Cruz County, Arizona. American Smelting and Refining Company, Tucson, Arizona, 5p.

- Kurtz, W.L. (1975). Supplemental Exploration Authorization Report, Thunder Mountain Project, Santa Cruz County, Arizona. American Smelting and Refining Company, Tucson, Arizona, 4p.
- Pierce, J. C., 1979, Three R property, historical addendum to 9-23-56 report: unpub, mine data by property owner, 1 p.
- Penny, C. P., 1965, Four Metals, ore reserves: unpub, geologic consultation for Noranda Mines, Limited, Canada: USBM Mineral Property File 04-021-106, 2 p., USBM-IFOC, Box 25086, Denver, CO, 80225-0086.
- Phillips, Jeffrey D. (2002), Processing and interpretation of aeromagnetic data for the Santa Cruz Basin Patagonia Mountains area, south-central Arizona; USGS OFR 2002-98.
- Regal Resources Inc. news release dated February 8, 2010. Available at <u>www.regalresinc.com</u>.
- Regal Resources Inc. news release dated February 3, 2012. Available at <u>www.regalresinc.com</u>.
- Rystrom, V. L., Finn, C. A., King, T. V. V. (2002) Geologic interpretation of aeromagentic data for the Santa Cruz Basin and Patagonia Mountains area, south-central, Arizona; USGS OFR 2002-100.
- Sampson, Jay A., Rodriguez, Brian D. (2010), Audio-magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona:U.S. Geological Survey OFR 2010-1311
- Schrader, F.C. and J. M. Hill (1915), Mineral deposits of the Santa Rita and Patagonia Mountains, Arizona, USGS Bull. 582;292-348.
- Sell, J.D. (1992). Thunder Mountain Project, Patagonia Mountains, Santa Cruz County, AZ. American Smelting and Refining Company, Tucson, Arizona, 4p.
- Sell, J.D. (1993). Summary Report, Thunder Mountain Project, Santa Cruz County, Arizona. American Smelting and Refining Company, Tucson, Arizona, 13p.
- Sial Geosciences, Inc. (1997), Aeromagnetic Survey in the Patagonia Area, Arizona: U.S. Geological Survey Project No. 96-A07-58

Sillitoe, Richard H. (2010), Porphyry Copper Systems, Economic Geology v105;3-41.

Simons, F. S., 1972, Mesozoic stratigraphy of the Patagonia Mountains and adjoining areas,


Santa Cruz County, Arizona: U.S. Geological Survey Professional Paper 658-E, 23 p.

- Simons, F.S. (1974), Geologic map and sections of the Nogales and Lochiel quadrangles, Santa Cruz County, Arizona: U.S. Geological Society Miscellaneous Investigations Series Map I-762.
- Singer, Donald A., Berger, Vladimir I., Moring, Barry C. (2005), Porphyry Copper Deposits of the World: Database, map and grade tonnage models: U.S. Geological Survey Open File Report 2005-1060, version 1.
- Vickre, P. G., Graybeal, F. t., Fleck, R., Barton, M. D., Seedorff, E. (2009) Succession of magmatic-hydrothermal events in the Patagonia Mountains, Arizona: Geological Society of America Annual meeting, Abstracts with programs, v.41, no. 6, p. 524.
- Wilson, L.K. (1951). Patagonia Mountains Copper Prospects. American Smelting and Refining Company, Tucson, Arizona, File Memorandum, 1p.

Certificate of Author

I, Andrew J. Turner, P.Geol., do hereby certify that:

- 1. I am currently employed as a Senior Geologist with: APEX Geoscience Ltd. #200 9797 45 Avenue Edmonton, Alberta, Canada T6E 5V8
- 2. My academic qualification is: Bachelor of Science, (Honors) Geology, received from the University of Alberta in 1989.
- 3. My professional affiliation(s): member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta, Canada (APEGGA) since 1994 as well as the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEGG).
- 4. I have worked as a geologist for more than 22 years since my graduation from university and have experience with Porphyry Cu deposits in Western Canada, the United States and Chile.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for the preparation of all sections of the technical report titled "*Technical Report on the Sunnyside Project, Arizona, USA*" and dated June 11, 2012 (the "Technical Report"), on behalf of Regal Resources Inc. (the "Company"), relating to the Sunnyside Project. I conducted a site visit to the Sunnyside Project between April 25 and 26, 2012.
- 7. I have had no involvement with the property that is the subject of the **Technical Report** prior to my site visit conducted between April 25 and 26, 2012.
- 8. As of the date of this certificate, to the best of the my knowledge, information and belief, the **Technical Report** contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.
- 9. I am fully independent of both the Company and the Property Vendor (MinQuest Inc.) in accordance with section 1.5 of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the **Technical Report** has been prepared in compliance with that Instrument and Form.
- 11. I consent to the public filing of the **Technical Report** and to extracts from, or a summary of the Technical Report, with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their website accessible by the public.

Andrew J. Turner, B.Sc., P.Geol.

Dated: June 11, 2012

Appendix 1

Detailed Property Information

Claim Name AMC No. Claimant's Name Status Location Buket 1 371758 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 NE Buket 2 371759 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 NE Buket 3 367720 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 NE SE Buket 7 371760 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 SE Buket 3 371761 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 SE HUM 01 368735 MinQuest Inc. Active NW ½ 05 23 16 HUM 03 413395 MinQuest Inc. Active NW ½ 05 23 16 HUM 04 368738 MinQuest Inc. Active NW ½ 05 23 16 HUM 05 368740 MinQuest Inc. Active SW ½ 05 23 16 HUM 06 368743 MinQuest Inc. Active SW ½ 05 23 16 HUM 07 368743 MinQuest Inc. Active SW ½ 05 23 16 HUM 08 368743 MinQuest Inc. Active	
Buket 3 367729 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 NE SE Buket 4 367730 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 NE SE Buket 8 371760 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 SE Buket 8 371761 RUSSELL CORNBRIAN CORN Active 14 02305 0160E 006 SE 14 02305 0160E 006 SE HUM 00 413394 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 03 488738 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 04 368740 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 05 368740 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 06 368741 MinQuest Inc. Active SW ½ 32 22 16 NW ½ NE ½ 05 23 16 HUM 09 368743 MinQuest Inc. Active SW ½ 32 22 16 NW ½ NE ½ 05 23 16 HUM 10 368744 MinQuest Inc. Active SW ½ 32 22 16 NW ½ NE ½ 05 23 16 HUM 11 370864 MinQuest Inc. Active SW ½ 32 22 16	
Buket 4 367730 RUSSELL CORVERIAN CORN Active 14 0230S 0160E 006 NE SE, 14 0230S Buket 8 371761 RUSSELL CORVERIAN CORN Active 14 0230S 0160E 006 SE Buket 8 371761 RUSSELL CORVERIAN CORN Active 14 0230S 0160E 006 SE HUM 01 368736 MinQuest Inc. Active NW X 16 X 05 23 16 HUM 03 413395 MinQuest Inc. Active NW X 16 X 05 23 16 HUM 04 368738 MinQuest Inc. Active NW X 16 X 05 23 16 HUM 05 368740 MinQuest Inc. Active SW X 16 X 05 23 16 HUM 06 368741 MinQuest Inc. Active SW X 16 X 32 22 16 NW X NE X 05 23 16 HUM 10 368743 MinQuest Inc. Active SW X 22 21 6 NW X NE X 05 23 16 HUM 11 370864 MinQuest Inc. Active SW X 22 21 6 NW X NE X 05 23 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370866 </td <td>160E 005 NW</td>	160E 005 NW
Buket 7 371760 RUSSELL CORNERIAN CORN Active 14 0230S 0160E 006 SE Buket 8 371761 RUSSELL CORNERIAN CORN Active NW ½ 05 23 16 HUM 01 368735 MinQuest Inc. Active NW ½ 05 23 16 HUM 02 413394 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 04 368738 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 05 368740 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 06 368741 MinQuest Inc. Active SW ½ NE ½ 05 23 16 HUM 09 368742 MinQuest Inc. Active SW ½ NE ½ 05 23 16 HUM 10 368743 MinQuest Inc. Active SW ½ NE ½ 05 23 16 HUM 11 370864 MinQuest Inc. Active SW ½ NE ½ 05 22 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 4155693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370866 MinQuest Inc. Active 31 22 16 32	
Buket 8 371761 RUSSELL CORVERIAN CORN Active 14 0230S 1062 066 SE, 14 0230S 0 HUM 01 368735 MinQuest Inc. Active NW ½ 05 23 16 HUM 03 413394 MinQuest Inc. Active NW ½ 05 23 16 HUM 04 368738 MinQuest Inc. Active NW ½ 05 23 16 HUM 05 368740 MinQuest Inc. Active NW ½ 05 23 16 HUM 06 368740 MinQuest Inc. Active SW ½ 05 23 16 HUM 06 368742 MinQuest Inc. Active SW ½ 05 23 16 HUM 08 388742 MinQuest Inc. Active SW ½ 05 23 16 HUM 10 368744 MinQuest Inc. Active SW ½ 05 23 16 HUM 11 370664 MinQuest Inc. Active SW ½ 22 16 NW ½ NE ½ 05 22 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370866 MinQuest Inc. Active 31 22 16 32 22 16 <td>S 0160E 005 NW SW</td>	S 0160E 005 NW SW
HUM 01 368735 MinQuest Inc. Active NW ½ 05 23 16 HUM 02 413394 MinQuest Inc. Active NW ½ 05 23 16 HUM 03 368738 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 05 368739 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 06 368740 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 06 368741 MinQuest Inc. Active SW ½ 32 22 16 NW ½ 05 23 16 HUM 09 368742 MinQuest Inc. Active SW ½ 32 22 16 NW ½ NE ½ 02 HUM 10 368744 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 11 370864 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 24 410694 MinQuest Inc. Active 31 22 16 32 22 16 <td></td>	
HUM 02 413394 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 03 413395 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 04 368738 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 05 368740 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 06 368741 MinQuest Inc. Active SW ½ 32 22 16 NW ½ 05 23 16 HUM 09 368742 MinQuest Inc. Active SW ½ 05 23 22 16 HUM 10 368743 MinQuest Inc. Active SW ½ 05 22 21 6 HUM 11 370864 MinQuest Inc. Active SW ½ 22 16 32 22 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active 31 22 16 32 22 16	160E 005 SW
HUM 03 413395 MinQuest Inc. Active NW % 05 23 16 HUM 05 368739 MinQuest Inc. Active NW % NE % 05 23 16 HUM 05 368740 MinQuest Inc. Active NW % NE % 05 23 16 HUM 06 368741 MinQuest Inc. Active NW % NE % 05 23 16 HUM 07 368741 MinQuest Inc. Active SW % 32 22 16 NW % 05 23 16 HUM 09 368743 MinQuest Inc. Active SW % 05 23 16 HUM 10 368744 MinQuest Inc. Active SW % 05 23 16 HUM 11 370864 MinQuest Inc. Active 31 22 16 32 22 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16	
HUM 04 368738 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 05 368739 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 06 368740 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 08 368741 MinQuest Inc. Active SW ½ 32 21 6 NW ½ 05 23 16 HUM 09 368742 MinQuest Inc. Active SW ½ 32 21 6 NW ½ 05 23 16 HUM 10 368744 MinQuest Inc. Active SW ½ 32 21 6 NW ½ 05 23 16 HUM 11 370864 MinQuest Inc. Active SW ½ 32 21 6 SW ½ 32 21 6 HUM 11 370864 MinQuest Inc. Active SI 22 16 32 22 16 SI 22 16 HUM 12 410048 MinQuest Inc. Active SI 22 16 32 22 16 SI 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active SI 22 16 32 22 16 SI 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active SI 22 16 32 22 16 SI 22 16 32 22 16 HUM 23 370868 MinQuest Inc. Active SI 22 1	
HUM 05 368739 MinQuest Inc. Active NW ¼ 05 23 16 HUM 06 368740 MinQuest Inc. Active NW ¼ 05 23 16 HUM 07 368741 MinQuest Inc. Active SW ½ 32 22 16 NW ¼ 05 23 16 HUM 09 368742 MinQuest Inc. Active SW ½ 52 22 16 NW ¼ 05 23 16 HUM 10 368744 MinQuest Inc. Active SW ½ 52 22 16 NW ¼ NE ¼ 05 HUM 11 370864 MinQuest Inc. Active SW ½ 52 22 16 HUM 12 410048 MinQuest Inc. Active S1 22 16 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 24 370869 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 </td <td></td>	
HUM 06 368740 MinQuest Inc. Active NW ½ NE ½ 05 23 16 HUM 07 368741 MinQuest Inc. Active SW ½ S2 21 6 NW ½ 05 23 16 HUM 08 368743 MinQuest Inc. Active SW ½ SE ½ 32 22 16 NW ½ 05 23 16 HUM 10 368744 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 11 370864 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410059 MinQuest Inc. Active 31 22 16 32 22 16 HUM 24 370868 MinQuest Inc. Active 31 22 16	
HUM 07 368741 MinQuest Inc. Active SW ¼ 32 22 16 NW ¼ 05 23 16 HUM 09 368743 MinQuest Inc. Active SW ½ 05 23 16 HUM 09 368744 MinQuest Inc. Active SW ½ 05 23 16 HUM 10 368744 MinQuest Inc. Active SW ½ 05 23 16 HUM 11 370864 MinQuest Inc. Active SW ½ 32 22 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 24 410594 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 24 410050 MinQuest Inc. Active 31 22 16 32 22 16	
HUM 08 368742 MinQuest Inc. Active SW ½ SE ½ 32 22 16 NW ½ NE ½ 05 HUM 10 368743 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 10 368744 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 11 370864 MinQuest Inc. Active SI 22 16 32 22 16 HUM 12 410048 MinQuest Inc. Active SI 22 16 32 22 16 HUM 13 415692 MinQuest Inc. Active 3I 22 16 32 22 16 HUM 14 370865 MinQuest Inc. Active 3I 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active 3I 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active 3I 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 3I 22 16 32 22 16 HUM 23 370868 MinQuest Inc. Active 3I 22 16 32 22 16 HUM 24 410050 MinQuest Inc. Active 3I 22 16 32 22 16 HUM 32 415695 MinQuest Inc. Active 3I 22 16 32 22 16 <td></td>	
HUM 09 368743 MinQuest Inc. Active SW ½ 05 23 16 HUM 10 368744 MinQuest Inc. Active SW ½ 8E ½ 32 22 16 HUM 11 370864 MinQuest Inc. Active SE ½ SW ½ 32 22 16 HUM 12 410048 MinQuest Inc. Active SE ½ SW ½ 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 24 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16	00.40
HUM 10 368744 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 11 370864 MinQuest Inc. Active 31 22 16 32 22 16 HUM 12 410048 MinQuest Inc. Active 31 22 16 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 32 22 15 NW ½ 31 22	23 16
HUM 11 370864 MinQuest Inc. Active 31 22 16 32 22 16 HUM 12 410048 MinQuest Inc. Active SI 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 24 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415696 MinQuest Inc. Active 31 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 33 415696 MinQuest Inc. Active 13 23 15 SB 100 368	
HUM 12 410048 MinQuest Inc. Active SE ¼ SW ¼ 32 22 16 HUM 13 415692 MinQuest Inc. Active 31 22 16 32 22 16 HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 27 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 33 415695 MinQuest Inc. Active 31 22 16 HUM 34 413397 MinQuest Inc. Active 13 22 16 HUM 34 413397 MinQuest Inc. Active 13 23 15 SB 100<	
HUM 13 415692 MinQuest Inc. Active 31 22 16 HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 37 415696 MinQuest Inc. Active 31 22 16 32 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 37 415696 MinQuest Inc. Active 31 22 16 HUM 48 </td <td></td>	
HUM 14 370865 MinQuest Inc. Active 31 22 16 32 22 16 HUM 19 415693 MinQuest Inc. Active 31 22 16 32 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active 31 22 16 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 33 415697 MinQuest Inc. Active 13 23 15 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 101	
HUM 19 415693 MinQuest Inc. Active 31 22 16 HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 27 370869 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 32 22 16 HUM 34 415697 MinQuest Inc. Active 31 22 16 HUM 47 413397 MinQuest Inc. Active LOT 1, T, NE ¼ 36 22 15 NW ¼ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15	
HUM 20 370866 MinQuest Inc. Active 31 22 16 32 22 16 HUM 21 370867 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 22 410049 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 33 415697 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ½ 36 22 15 NW ½ 31 22 16 HUM 48 413397 MinQuest Inc. Active 13 23 15 SB 100 368796 MinQuest Inc. Active 13 23 15	
HUM 21 370867 MinQuest Inc. Active 31 22 16 32 22 16 HUM 22 410049 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 27 370869 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 33 415697 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active 13 23 15 HUM 48 4113397 MinQuest Inc. Active 13 23 15 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 77 368786	
HUM 22 410049 MinQuest Inc. Active SW ¼ SE ¼ 32 22 16 HUM 25 415694 MinQuest Inc. Active 31 22 16 32 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 27 370869 MinQuest Inc. Active SW ¼ SE ¼ 32 22 16 HUM 28 410050 MinQuest Inc. Active SW ½ SE ¼ 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 32 22 16 HUM 33 415697 MinQuest Inc. Active 31 22 16 HUM 34 413396 MinQuest Inc. Active 13 22 15 HUM 48 413397 MinQuest Inc. Active LOT 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 18 23 16 <	
HUM 25 415694 MinQuest Inc. Active 31 22 16 HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 27 370869 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active 31 22 16 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 37 415697 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active 10 1 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 HUM 48 413397 MinQuest Inc. Active 13 23 15 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368786 MinQuest Inc. Active 13 23 15 SB 80 370870	
HUM 26 370868 MinQuest Inc. Active 31 22 16 32 22 16 HUM 27 370869 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 37 415697 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ½ 36 22 15 NW ½ 31 22 HUM 48 413397 MinQuest Inc. Active LOT 1 NE ½ 36 22 15 NW ½ 31 22 HUM 48 413397 MinQuest Inc. Active 13 23 15 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 31 22 16 18 23 16 SB 80 </td <td></td>	
HUM 27 370869 MinQuest Inc. Active 31 22 16 32 22 16 HUM 28 410050 MinQuest Inc. Active SW ½ SE ½ 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 37 415697 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 37 413396 MinQuest Inc. Active 10 22 16 HUM 48 413397 MinQuest Inc. Active LOT 1, 7, NE ½ 36 22 15 NW ½ 31 22 16 HUM 48 413397 MinQuest Inc. Active LOT 1 NE ½ 36 22 15 NW ½ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 84 370871 MinQuest Inc. Active 31 22 16 18 23 16 <t< td=""><td></td></t<>	
HUM 28 410050 MinQuest Inc. Active SW ¼ SE ¼ 32 22 16 HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 37 415697 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 HUM 48 413397 MinQuest Inc. Active LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 HUM 48 413397 MinQuest Inc. Active LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 B 100 368796 MinQuest Inc. Active 13 23 15 SB 101 368797 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82	
HUM 31 415695 MinQuest Inc. Active 31 22 16 32 22 16 HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 37 415697 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 HUM 48 413397 MinQuest Inc. Active LOT 1, NE ¼ 36 22 15 NW ¼ 31 22 HUM 48 413397 MinQuest Inc. Active 13 23 15 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 22 16 18 23 16 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370871 MinQuest Inc. Active 31 22 16 18 23 16 S8 84	
HUM 32 415696 MinQuest Inc. Active 31 22 16 HUM 37 415697 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 HUM 48 413397 MinQuest Inc. Active LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 101 368797 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB	
HUM 37 415697 MinQuest Inc. Active 31 22 16 HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 16 HUM 48 413397 MinQuest Inc. Active LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 101 368797 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 76 368787 MinQuest Inc. Active 13 23 15 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 S	
HUM 38 415698 MinQuest Inc. Active 31 22 16 HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 16 B 100 368796 MinQuest Inc. Active LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 101 368797 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 SB 70 368787 MinQuest Inc. Active 13 23 15 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 3708	
HUM 47 413396 MinQuest Inc. Active LOT 1, 7, NE ¼ 36 22 15 NW ¼ 31 22 16 HUM 48 413397 MinQuest Inc. Active LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 101 368797 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 76 368787 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 <td></td>	
HUM 48 413397 MinQuest Inc. Active LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 16 SB 100 368796 MinQuest Inc. Active 13 23 15 SB 101 368797 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 13 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 <t< td=""><td>16</td></t<>	16
SB 100 368796 MinQuest Inc. Active 13 23 15 SB 101 368797 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 13 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876	
SB 101 368797 MinQuest Inc. Active 13 23 15 SB 74 368784 MinQuest Inc. Active 13 23 15 SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 31 22 16 18 23 16 SB 90 370877	
SB 75 368785 MinQuest Inc. Active 13 23 15 SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 31 22 16 18 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91	
SB 76 368786 MinQuest Inc. Active 13 23 15 SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 21 22 16 07 23 16 SB 9	
SB 77 368787 MinQuest Inc. Active 13 23 15 18 23 16 SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 31 22 16 07 23 16 SB 92 368788 MinQuest Inc. Active 21 22 16 07 23 16	
SB 80 370870 MinQuest Inc. Active 31 22 16 18 23 16 SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 21 22 16 07 23 16 SB 92 368788 MinQuest Inc. Active 21 22 16 07 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 81 370871 MinQuest Inc. Active 31 22 16 18 23 16 SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 31 22 16 18 23 16 SB 92 368788 MinQuest Inc. Active 21 22 16 07 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 82 370872 MinQuest Inc. Active 31 22 16 18 23 16 SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 31 22 16 18 23 16 SB 92 368788 MinQuest Inc. Active 21 22 16 07 23 16 SB 93 368789 MinQuest Inc. Active 21 22 16 07 23 16	
SB 84 370873 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 86 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 21 22 16 07 23 16 SB 92 368788 MinQuest Inc. Active 21 22 16 07 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 86 370874 MinQuest Inc. Active 31 22 16 18 23 16 SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 31 22 16 18 23 16 SB 92 368788 MinQuest Inc. Active 21 22 16 07 23 16 SB 93 368789 MinQuest Inc. Active 21 22 16 07 23 16	
SB 88 370875 MinQuest Inc. Active 31 22 16 18 23 16 SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 31 22 16 18 23 16 SB 92 368788 MinQuest Inc. Active 21 22 16 07 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 89 370876 MinQuest Inc. Active 21 22 16 07 23 16 SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 21 22 16 07 23 16 SB 91 370878 MinQuest Inc. Active 21 22 16 07 23 16 SB 92 368788 MinQuest Inc. Active 18 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 90 370877 MinQuest Inc. Active 31 22 16 18 23 16 SB 91 370878 MinQuest Inc. Active 21 22 16 07 23 16 SB 92 368788 MinQuest Inc. Active 18 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 91 370878 MinQuest Inc. Active 21 22 16 07 23 16 SB 92 368788 MinQuest Inc. Active 18 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 92 368788 MinQuest Inc. Active 18 23 16 SB 93 368789 MinQuest Inc. Active 18 23 16	
SB 93 368789 MinQuest Inc. Active 18 23 16	
JOB 94 JOB JOB ININQUEST INC. ACTIVE 13 23 15	
SB 95 368791 MinQuest Inc. Active 13 23 15 SD 90 Active 14 23 15 14 23 15	
SB 96 368792 MinQuest Inc. Active 13 23 15 SD 97 Active 14 23 15 14 23 15	
SB 97 368793 MinQuest Inc. Active 13 23 15 SB 97 368704 MinQuest Inc. Active 13 23 15	
SB 98 368794 MinQuest Inc. Active 13 23 15 SB 90 369705 MinQuest Inc. Active 13 23 15	
SB 99 368795 MinQuest Inc. Active 13 23 15 VEN 1 270790 MinQuest Inc. Active I OT 10 SW 1/ 26 22 15 NW 1/ 1 22 1	=
VEN 1 370789 MinQuest Inc. Active LOT 10 SW ¼ 36 22 15 NW ¼ 1 23 1 VEN 10 270706 MinQuest Inc. Active NW ¼ NE 1/ 1 23 15)
VEN 10 370796 MinQuest Inc. Active NW ¼ NE ¼ 1 23 15 VEN 100 370190 MinQuest Inc. Active SE ¼ 6 23 16	
VEN 100 370190 MinQuest Inc. Active SE ¼ 6 23 16 VEN 101 370842 MinQuest Inc. Active SW ¼ SE ¼ 6 23 16	
VEN 101 370842 MinQuest Inc. Active SW ¼ SE ¼ 6 23 16 VEN 102 370843 MinQuest Inc. Active SE ¼ 6 23 16	
VEN 102 370843 MinQuest Inc. Active SE ¼ 6 23 16 VEN 103 370844 MinQuest Inc. Active SW ¼ SE ¼ 6 23 16	
VEN 103 370844 MinQuest Inc. Active SW 74 52 76	
VEN 104 370845 MinQuest Inc. Active SE ¼ 6 23 16 VEN 105 370846 MinQuest Inc. Active SW ¼ SE ¼ 6 23 16	
VEN 105 370846 MinQuest Inc. Active SW // 3E // 623 16 VEN 106 370847 MinQuest Inc. Active SE // 623 16	
VEN 100 370847 Minduest Inc. Active SE // 0 23 10 VEN 107 370848 MinQuest Inc. Active SW ¼ SE ¼ 6 23 16	

Claim Name	AMC No.	Claimant's Name	Status	Location
VEN 107a	370849	MinQuest Inc.	Active	SW ¼ SE ¼ 6 23 16
VEN 108	370850	MinQuest Inc.	Active	SE ¼ 6 23 16
VEN 109	370851	MinQuest Inc.	Active	SW ¼ SE ¼ 6 NW ¼ NE ¼ 7 23 16
VEN 11	372233	MinQuest Inc.	Active	NW ¼ 1 23 15
VEN 111	370852	MinQuest Inc.	Active	NW ¼ NE ¼ 7 23 16
VEN 112	n/a 370853	MinQuest Inc.	n/a Active	staked but not yet filed NW ¼ NE ¼ 7 23 16
VEN 113 VEN 114	n/a	MinQuest Inc. MinQuest Inc.	n/a	staked but not yet filed
VEN 115	376882	MinQuest Inc.	Active	NW ¼ NE ¼ 7 23 16
VEN 116	376883	MinQuest Inc.	Active	NE ¼ 7 23 16
VEN 117	376884	MinQuest Inc.	Active	NW ¼ NE ¼ SW ¼ SE ¼ 7 23 16
VEN 118	376885	MinQuest Inc.	Active	NE ¼ SE ¼ 7 23 16
VEN 119	376886	MinQuest Inc.	Active	SW ¼ SE ¼ 7 23 16
VEN 12	370797	MinQuest Inc.	Active	NW ¼ NE ¼ 1 23 15
VEN 120	376887	MinQuest Inc.	Active	SE ¼ 7 23 16
VEN 121	376888	MinQuest Inc.	Active	SW ¼ SE ¼ 7 23 16
VEN 122 VEN 123	376889 376890	MinQuest Inc. MinQuest Inc.	Active Active	SE ¼ 7 23 16 SW ¼ SE ¼ 7 23 16
VEN 123 VEN 124	370890	MinQuest Inc.	Active	SW 74 SE 74 7 25 10 SE 1⁄4 31 SW 1⁄4 32 22 16
VEN 125	370192	MinQuest Inc.	Active	SE ¼ 31 SW ¼ 32 22 16 NE ¼ 6 NW ¼ 5 23 16
VEN 126	370193	MinQuest Inc.	Active	NE ¼ 6 NW ¼ 5 23 16
VEN 127	370194	MinQuest Inc.	Active	NE ¼ 6 NW ¼ 5 23 16
VEN 128	370195	MinQuest Inc.	Active	NE ¼ 6 NW ¼ 5 23 16
VEN 129	n/a	MinQuest Inc.	n/a	staked but not yet filed
VEN 13	370798	MinQuest Inc.	Active	NW ¼ NE ¼ 1 23 15
VEN 130	370854	MinQuest Inc.	Active	NW ¼ 5 23 16
VEN 131	370196	MinQuest Inc.	Active	NE ¼ 6 NW ¼ 5 23 16
VEN 131a	371459	MinQuest Inc.	Active	NE ¼ SE ¼ 6 NW ¼ SW ¼ 5 23 16
VEN 132 VEN 133	370855 371460	MinQuest Inc. MinQuest Inc.	Active Active	NW ¼ 5 23 16 SE ¼ 6 SW ¼ 5 23 16
VEN 133 VEN 134	370856	MinQuest Inc.	Active	NW ¼ 5 23 16
VEN 134	370197	MinQuest Inc.	Active	SE ¼ 6 SW ¼ 5 23 16
VEN 137	370857	MinQuest Inc.	Active	SE ¼ 6 SW ¼ 5 23 16
VEN 139	n/a	MinQuest Inc.	n/a	staked but not yet filed
VEN 14	370799	MinQuest Inc.	Active	31 22 16 01 23 15
VEN 146	376891	MinQuest Inc.	Active	SE ¼ 7 23 16
VEN 147	376892	MinQuest Inc.	Active	SW ¼ SE ¼ 7 NW ¼ NE ¼ 17 23 16
VEN 148	376893	MinQuest Inc.	Active	SE ¼ 7 NE ¼ 17 23 16
VEN 149	376894	MinQuest Inc. MinQuest Inc.	Active	NW ¼ NE ¼ 17 23 16 NE ¼ 1 23 15 NE ¼ 6 23 16
VEN 15 VEN 150	370800 376895	MinQuest Inc.	Active Active	NE ¼ 17 23 16
VEN 150	376896	MinQuest Inc.	Active	NE ¼ 7 NW ¼ 8 23 16
VEN 152	376897	MinQuest Inc.	Active	NW ¼ 8 23 16
VEN 153	376898	MinQuest Inc.	Active	NE ¼ SE ¼ 7 NW ¼ SW ¼ 8 23 16
VEN 154	413406	MinQuest Inc.	Active	NW & SW ¼ 05 23 16
VEN 155	376900	MinQuest Inc.	Active	SE ¼ 7 SW ¼ 8 23 16
VEN 156	413407	MinQuest Inc.	Active	SW ¼ 08 23 16
VEN 157	376902	MinQuest Inc.	Active	SE ¼ 7 SW ¼ 8 23 16
VEN 158 VEN 159	413408 376904	MinQuest Inc. MinQuest Inc.	Active	SW ¼ 08 23 16 SE ¼ 7 SW ¼ 8 23 16
VEN 159 VEN 16	376904	MinQuest Inc.	Active Active	SE ¼ 7 SW ¼ 8 23 16 SE ¼ SW ¼ 01 23 15
VEN 160	413409	MinQuest Inc.	Active	SW ¼ 08 23 16
VEN 161	376906	MinQuest Inc.	Active	SE ¼ 7 SW ¼ 8 NW ¼ 17 NE ¼ 18 23 16
VEN 162	413410	MinQuest Inc.	Active	SW ¼ 08 NW ¼ 17 23 16
VEN 163	376908	MinQuest Inc.	Active	NW ¼ 17 NE ¼ 18 23 16
VEN 164	413411	MinQuest Inc.	Active	NW ¼ 17 23 16
VEN 165	413412	MinQuest Inc.	Active	NW 1/4 17 NE 1/4 18 23 16
VEN 166	413413	MinQuest Inc.	Active	NW ¼ 17 23 16
VEN 167	410057	MinQuest Inc.	Active	NW ¼ NE ¼ 5 23 16
VEN 167a VEN 168	376912 410058	MinQuest Inc. MinQuest Inc.	Active Active	NW ¼ 17 NE ¼ 18 23 16 NW ¼ NE ¼ 5 23 16
VEN 168a	376913	MinQuest Inc.	Active	NW ¼ 17 23 16
VEN 169	410059	MinQuest Inc.	Active	NW ¼ NE ¼ SW1/4 SE ¼ 05 23 16
	376914	MinQuest Inc.	Active	NW ¼ 17 NE ¼ 18 23 16
VEN 169a				
VEN 169a VEN 17	370802	MinQuest Inc.	Active	NE ¼ 21 23 15 NW ¼ 06 23 16
			Active Active	NE ¼ 21 23 15 NW ¼ 06 23 16 NW ¼ 17 23 16

Claim Name	AMC No.	Claimant's Name	Status	Location
VEN 178	372247	MinQuest Inc.	Active	SW ¼ 01 23 15
VEN 179	372248	MinQuest Inc.	Active	SW ¼ 01 23 15
VEN 18	370803	MinQuest Inc.	Active	SW ¼ SE ¼ 1 23 15
VEN 180	370861	MinQuest Inc.	Active	SE ¼ 35 SW ¼ 36 22 15 NW ¼ 1 NE ¼ 2 23 15
VEN 181	370862	MinQuest Inc.	Active	SE ¼ 35 SW ¼ 36 22 15 NW ¼ 1 NE ¼ 2 23 15
VEN 182	370863	MinQuest Inc.	Active	NW ¼ 1 NE ¼ 2 23 15
VEN 183	372249	MinQuest Inc.	Active	NW ¼ 1 NE ¼ 2 23 15
VEN 185	372251	MinQuest Inc.	Active	NW ¼ SW ¼ 1 23 15
VEN 186	415700	MinQuest Inc.	Active	NW ¼ SW ¼ 1 23 15
VEN 187	415701	MinQuest Inc.	Active	NW ¼ SW ¼ 1 23 15
VEN 20 VEN 22	370804	MinQuest Inc.	Active	SW ¼ SE ¼ 1 23 15
	370805	MinQuest Inc.	Active	SW ¼ SE ¼ 1 23 15
VEN 226	410051	MinQuest Inc.	Active	NE ¼ 35 22 15
VEN 228 VEN 23	410052 372234	MinQuest Inc. MinQuest Inc.	Active Active	NE ¼ 35 22 15 SW ¼ 1 23 15
VEN 230	410053	MinQuest Inc.	Active	NE ¼ 35 22 15
VEN 230 VEN 232	410053	MinQuest Inc.	Active	NE ¼ SE ¼ 35 22 15
VEN 232	410054	MinQuest Inc.	Active	SE ¼ 35 22 15
VEN 234	372257	MinQuest Inc.	Active	SE /4 35 22 15
VEN 238	372258	MinQuest Inc.	Active	SW ¼ 35 22 15
VEN 236	372235	MinQuest Inc.	Active	SW ¼ SE ¼ 1 23 15
VEN 240	372259	MinQuest Inc.	Active	SW 1/4 35 22 15 NE 1/4 2 23 15
VEN 240	372259	MinQuest Inc.	Active	SW ¼ 35 22 15 NE ¼ 2 23 15
VEN 244	372261	MinQuest Inc.	Active	NE ¼ 2 23 15
VEN 254	372262	MinQuest Inc.	Active	NE ¼ 2 23 15
VEN 26	372237	MinQuest Inc.	Active	SW ¼ SE ¼ 1 23 15
VEN 28	413398	MinQuest Inc.	Active	SE ¼ SW ¼ 1 NE ¼ NW ¼ 12 23 15
VEN 3	370790	MinQuest Inc.	Active	SW ¼ 36 22 15 NW ¼ 01 23 15
VEN 30	413399	MinQuest Inc.	Active	NE ¼ NW ¼ 12 23 15
VEN 32	413400	MinQuest Inc.	Active	NE ¼ NW ¼ 12 23 15
VEN 34	413401	MinQuest Inc.	Active	NE ¼ NW ¼ 12 23 15
VEN 36	413402	MinQuest Inc.	Active	NE ¼ NW ¼ SE ¼ SW ¼ 12 23 15
VEN 38	413403	MinQuest Inc.	Active	SE ¼ SW ¼ 12 23 15
VEN 40	413404	MinQuest Inc.	Active	SE ¼ SW ¼ 12 23 15
VEN 42	413405	MinQuest Inc.	Active	SE ¼ SW ¼ 12 23 15
VEN 43	370174	MinQuest Inc.	Active	SW 1/431 22 16
VEN 44	370175	MinQuest Inc.	Active	SW ¼ 31 22 16 NW ¼ 06 23 16
VEN 45	370176	MinQuest Inc.	Active	NW ¼ 6 23 16
VEN 46	376879	MinQuest Inc.	Active	NE ¼ 01 23 15 NW ¼ 06 23 16
VEN 47	376880	MinQuest Inc.	Active	NE ¼ 01 23 15 NW ¼ 06 23 16
VEN 48	370177	MinQuest Inc.	Active	NW ¼ 06 23 16
VEN 5	370791	MinQuest Inc.	Active	NW ¼ 1 23 15
VEN 50	370178	MinQuest Inc.	Active	NW ¼ 06 23 16
VEN 500	372263	MinQuest Inc.	Active	SE ¼ 35 SW ¼ 36 22 15
VEN 501	410056	MinQuest Inc.	Active	NE ¼ SE ¼ 35 22 15 NW ¼ SW ¼ 36 22 15
VEN 502	372265	MinQuest Inc.	Active	SW ¼ 36 22 15
VEN 503	372266	MinQuest Inc.	Active	NW ¼ SW ¼ 36 22 15
VEN 504	372267	MinQuest Inc.	Active	SW ¼ 36 22 15
VEN 505	372268	MinQuest Inc.	Active	NW ¼ SW ¼ 36 22 15
VEN 506	372269	MinQuest Inc.	Active	LOT 9, 10 SW ¼ 36 22 15
VEN 507	372270	MinQuest Inc.	Active	LOT 5, 9 NW ¼ SW ¼ 36 22 15
VEN 508	372271	MinQuest Inc.	Active	LOT 9, 10 SW ¼ 36 22 15
VEN 509	372272	MinQuest Inc.	Active	LOT 5, 9 NW ¼ SW ¼ 36 22 15
VEN 51	370806	MinQuest Inc.	Active	NE ¼ 01 23 15 NW ¼ 06 23 16
VEN 510	372273	MinQuest Inc.	Active	SW ¼ SE ¼ 36 22 15
VEN 511	372274	MinQuest Inc.	Active	LOT 10, 11 SW ¼ SE ¼ 36 22 15 NW ¼ NE ¼ 1 23 15 LOT 5, 6, NW ¼ NE ¼ 36 22 15
VEN 512	372275	MinQuest Inc.	Active	
VEN 513 VEN 514	372276 372277	MinQuest Inc. MinQuest Inc.	Active	LOT 1, 2, 3, 5, 6 NW ¼ NE ¼ 36 22 15 LOT 1, 2, 3, NW ¼ NE ¼ 36 22 15
VEN 514 VEN 515	372277	MinQuest Inc.	Active Active	
				LOT 3, 4, 5 NW ¼ 36 22 15
VEN 516 VEN 517	413415 372280	MinQuest Inc. MinQuest Inc.	Active	NE ¼ 35 NW ¼ LOT 3, 4 36 22 15 LOT 3, 4 NW ¼ 05 23 16
			Active	
VEN 518	413416	MinQuest Inc.	Active	NE ¼ 35 NW ¼ LOT 4 36 22 15
	370807	MinQuest Inc.	Active	NW ¼ 06 23 16
		MinOuroot Inc.	A otivio	NE 1/ 01 22 15 NW/ 1/ 06 22 16
VEN 52 VEN 53 VEN 530	370808 376916	MinQuest Inc. MinQuest Inc.	Active Active	NE ¼ 01 23 15 NW ¼ 06 23 16 SW ¼ 05 23 16

Claim Name	AMC No.	Claimant's Name	Status	Location
VEN 535	376920	MinQuest Inc.	Active	SW ¼ 05 23 16
VEN 537	413417	MinQuest Inc.	Active	SW ¼ 05 23 16
VEN 538	376923	MinQuest Inc.	Active	SE ¼ 6 SW ¼ 5 23 16
VEN 539	413418	MinQuest Inc.	Active	SW ¼ 05 23 16
VEN 54	370809	MinQuest Inc.	Active	NW ¼ 06 23 16
VEN 540	376925	MinQuest Inc.	Active	SE ¼ 6 SW ¼ 5 23 16
VEN 541	413419	MinQuest Inc.	Active	SW ¼ 05 23 16
VEN 542	376927	MinQuest Inc.	Active	05 23 16 06 23 16 07 23 16 08 23 16
VEN 543	413420	MinQuest Inc.	Active	SW ¼ 5 NW ¼ 08 23 16
VEN 544	376929	MinQuest Inc.	Active	07 23 16 08 23 16
VEN 545	413421	MinQuest Inc.	Active	NW ¼ 08 23 16
VEN 547	376932	MinQuest Inc.	Active	NE ¼ 07 23 16
VEN 548	413422	MinQuest Inc.	Active	NE ¼ 07 NW ¼ 08 23 16
VEN 549	413423	MinQuest Inc.	Active	NW ¼ 05 23 16
VEN 55	370810	MinQuest Inc.	Active	NE ¼ 01 23 15 NW ¼ 06 23 16
VEN 551	376935	MinQuest Inc.	Active	SE ¼ 02 23 15
VEN 552	376936	MinQuest Inc.	Active	SE ¼ 02 23 15
VEN 553	376937	MinQuest Inc.	Active	SE ¼ 02 23 15
VEN 554	376938	MinQuest Inc.	Active	SE ¼ 02 23 15
VEN 556	413424	MinQuest Inc.	Active	SW ¼ 1 23 15
VEN 557	413425	MinQuest Inc.	Active	SW ¼ 1 SE ¼ 23 15
VEN 558	376942	MinQuest Inc.	Active	SE ¼ 1 SW ¼ 2 23 15
VEN 558A	413426	MinQuest Inc.	Active	SW ¼ 1 SE ¼ 2 23 15
VEN 559	413427	MinQuest Inc.	Active	SW ¼ 1 SE ¼ 02 23 15
VEN 56	370811	MinQuest Inc.	Active	SW ¼ NW ¼ 06 23 16
VEN 560	413428	MinQuest Inc.	Active	SW ¼ 1 NW ¼ 12 23 15
VEN 561	413429	MinQuest Inc.	Active	SW ¼ 1 SE ¼ 2 NE1/4 11NW ¼ 12 23 15
VEN 562	413430	MinQuest Inc.	Active	NW ¼ 12 23 15
VEN 563	413431	MinQuest Inc.	Active	NE ¼ 11 NW ¼ 12 23 15
VEN 564	413432	MinQuest Inc.	Active	NW ¼ 12 23 15
VEN 565	413433	MinQuest Inc.	Active	NE ¼ 11 NW ¼ 12 23 15
VEN 566	413434	MinQuest Inc.	Active	NW 1/412 23 15
VEN 567	413435	MinQuest Inc.	Active	NE ¼ 11 NW ¼ 12 23 15
VEN 568	413436	MinQuest Inc.	Active	NW ¼ SW ¼ 12 23 15
VEN 569	413437	MinQuest Inc.	Active	NE ¼ SE ¼ 11 NW ¼ SW ¼ 12 23 15
VEN 57	370812	MinQuest Inc.	Active	SE ¼ 01 23 15 SW ¼ 06 23 16
VEN 571	376955	MinQuest Inc.	Active	NW ¼ 31 22 16
VEN 572	376956	MinQuest Inc.	Active	NW ¼ NE ¼ 31 22 16
VEN 573	376957	MinQuest Inc.	Active	NW ¼ 31 22 16
VEN 574	376958	MinQuest Inc.	Active	NW ¼ NE ¼ 31 22 16
VEN 575	376959	MinQuest Inc.	Active	NW ¼ 31 22 16
VEN 576	376960	MinQuest Inc.	Active	NW ¼ NE ¼ SW ¼ SE ¼ 31 22 16
VEN 577	376961	MinQuest Inc.	Active	NW ¼ SW ¼ 31 22 16
VEN 578	376962	MinQuest Inc.	Active	31 22 16
VEN 579	376963	MinQuest Inc.	Active	SW ¼ 31 22 16
VEN 58	370813	MinQuest Inc.	Active	SW ¼ NW ¼ 06 23 16
VEN 580	376964	MinQuest Inc.	Active	SW ¼ SE ¼ 31 22 16
VEN 581	376965	MinQuest Inc.	Active	SW ¼ 31 22 16
VEN 582	376966	MinQuest Inc.	Active	SW ¼ SE ¼ 31 22 16
VEN 583	376967	MinQuest Inc.	Active	NE ¼ SE ¼ 36 22 15 NW ¼ SW ¼ 31 22 16
VEN 584	376968	MinQuest Inc.	Active	LOT 1 NE ¼ 36 22 15 NW ¼ 31 22 16
VEN 59	370814	MinQuest Inc.	Active	SE ¼ 01 23 15 SW ¼ 06 23 16
VEN 6	370792	MinQuest Inc.	Active	NW ¼ NE ¼ 1 23 15
VEN 60	370815	MinQuest Inc.	Active	SW ¼ 06 23 16
VEN 61	370816	MinQuest Inc.	Active	SE ¼ 01 23 15 SW ¼ 06 23 16
VEN 62	370817	MinQuest Inc.	Active	SW ¼ 06 23 16
VEN 63	370818	MinQuest Inc.	Active	SE ¼ 01 23 15 SW ¼ 06 23 16
VEN 64	370819	MinQuest Inc.	Active	SE ¼ 01 23 15 SW ¼ 06 23 16
VEN 65	370820	MinQuest Inc.	Active	SE ¼ 01 23 15 SW ¼ 06 23 16
	370821	MinQuest Inc.	Active	SE 1/ 01 23 15 SW 1/ 06 23 16
VEN 67 VEN 68	370822	MinQuest Inc. MinQuest Inc.	Active	SE ¼ 01 NE ¼ 12 23 15 SW ¼ 06 NW ¼ 7 23 16 SE ¼ 01 NE ¼ 12 23 15 SW ¼ 06 NW ¼ 7 23 16
	370823		Active	
VEN 69	370824	MinQuest Inc.	Active	NE ¼ 12 23 15
VEN 7 VEN 70	370793	MinQuest Inc. MinQuest Inc.	Active	NW ¼ 1 23 15 NE ¼ 12 23 15 NW ¼ 7 23 16
VEN 70 VEN 71	370825		Active	
	370826	MinQuest Inc.	Active	NE ¼ 12 23 15 NE ¼ 12 23 15 NW ¼ 7 23 16
VEN 72	370827	MinQuest Inc.	Active	NE ¼ 12 23 15 NW ¼ 7 23 16

Claim Name	AMC No.	Claimant's Name	Status	Location
VEN 73	370828	MinQuest Inc.	Active	NE ¼ 12 23 15
VEN 74	370829	MinQuest Inc.	Active	NE ¼ 12 23 15 NW ¼ 7 23 16
VEN 75	370830	MinQuest Inc.	Active	NE ¼ SE ¼ 12 23 15 NW ¼ SW ¼ 7 23 16
VEN 76	370831	MinQuest Inc.	Active	NE ¼ SE ¼ 12 23 15 NW ¼ SW ¼ 7 23 16
VEN 77	370832	MinQuest Inc.	Active	SE ¼ 12 23 15 SW ¼ 7 23 16
VEN 78	370833	MinQuest Inc.	Active	SE ¼ 12 23 15 SW ¼ 7 23 16
VEN 79	370834	MinQuest Inc.	Active	SE ¼ 12 23 15 SW ¼ 7 23 16
VEN 8	370794	MinQuest Inc.	Active	NW ¼ NE ¼ 1 23 15
VEN 80	370835	MinQuest Inc.	Active	SE ¼ 12 23 15 SW ¼ 7 23 16
VEN 81	370836	MinQuest Inc.	Active	SE ¼ 12 23 15 SW ¼ 7 23 16
VEN 82	370837	MinQuest Inc.	Active	SE ¼ 12 23 15 SW ¼ 7 23 16
VEN 83	370179	MinQuest Inc.	Active	SW ¼ SE ¼ 31 22 16
VEN 84	370180	MinQuest Inc.	Active	SE 1/431 22 16
VEN 85	370181	MinQuest Inc.	Active	SW ¼ SE ¼ 31 22 16 NW ¼ NE ¼ 6 23 15
VEN 86	370182	MinQuest Inc.	Active	SE ¼ 31 22 16 NE ¼ 6 23 15
VEN 87	370183	MinQuest Inc.	Active	NW ¼ NE ¼ 31 23 16
VEN 88	370184	MinQuest Inc.	Active	NE ¼ 6 23 16
VEN 89	370185	MinQuest Inc.	Active	NW ¼ NE ¼ 31 23 16
VEN 9	370795	MinQuest Inc.	Active	NW ¼ 1 23 15
VEN 90	370186	MinQuest Inc.	Active	NE ¼ 6 23 16
VEN 91	370187	MinQuest Inc.	Active	NW ¼ NE ¼ 31 23 16
VEN 92	370188	MinQuest Inc.	Active	NE ¼ 6 23 16
VEN 93	370838	MinQuest Inc.	Active	NW ¼ NE ¼ 31 23 16
VEN 94	371457	MinQuest Inc.	Active	NE ¼ 31 23 16
VEN 95A	376881	MinQuest Inc.	Active	NW ¼ 05 23 16 NE ¼ 06 23 16
VEN 96	370189	MinQuest Inc.	Active	NE ¼ 6 23 16
VEN 96a	371456	MinQuest Inc.	Active	NE ¼ SE ¼ 6 23 16
VEN 97	370840	MinQuest Inc.	Active	NE ¼ SE ¼ NW ¼ SW ¼ 6 23 16
VEN 98	371458	MinQuest Inc.	Active	SE ¼ 6 23 16
VEN 99	370841	MinQuest Inc.	Active	SW ¼ SE ¼ 6 23 16

Appendix 2

Detailed Core Sampling and Re-Sampling Data

Appendix 2a – DDH BB-2, 3, 4 6, TM-13, 14 and TCH-2A

Appendix 2b – DDH TCH-2 (part 1)

Appendix 2b – DDH TCH-2 (part 2)

Appendix 2d – DDH TCH-2A (part 2)

Appendix 2e – DDH TM-13 (part 2)

Drill Hole	FROM	то	INTERVAL	SAMPLE	CORE	Au	CuT	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	к
	(ft)	(ft)	(ft)			ppb	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%
	、 <i>/</i>	. /	. ,			5	0.01	0.2	0.01	5	10	0.5	5	0.01	1	1	1	1	0.01	1	0.01
TM-14	540	550	10	53951	full	23	< 0.01	1.4	0.26	25	20	< 0.5	< 5	0.03	3	12	222	94	2.69	< 1	0.12
TM-14	550	559	9	53952	half	10	< 0.01	0.6	0.36	10	20	< 0.5	< 5	0.03	2	6	277	83	1.1	< 1	0.09
TM-14	559	569	10	53953	full	28	0.05	3.4	0.41	200	50	< 0.5	< 5	0.02	9	24	92	471	3.76	< 1	0.23
TM-14	569	578	9	53954	full	17	< 0.01	0.8	0.38	80	50	< 0.5	< 5	0.02	5	23	105	107	3.54	< 1	0.21
TM-14	578	590	12	53955	full	20	0.03	1.6	0.35	145	40	< 0.5	< 5	0.02	10	23	103	344	4.08	< 1	0.18
TM-14	590	600	10	53956		20	< 0.01	0.6	0.32	25	30	< 0.5	< 5	0.01	5	33	159	72	4.62	< 1	0.09
TM-14	600	607	7	53957		36	< 0.01	0.8	0.3	15	10	< 0.5	< 5	0.03	4	37	206	37	4.64	< 1	0.02
TM-14	607	617	10	53958		11	< 0.01	0.6	0.29	5	20	< 0.5	< 5	0.02	2	23	248	40	4.09	< 1	0.02
TM-14	617	627	10	53959		26	< 0.01	0.6	0.34	10	< 10	< 0.5	< 5	0.02	3	35	226	32	4.96	< 1	0.02
TM-14	627	637	13	53960		24	< 0.01	0.2	0.31	5	20	< 0.5	< 5	0.02	1	29	233	33	4.09	< 1	0.03
TM-14 TM-14	637 647	647 657	10 10	53961 53962		38 17	< 0.01 < 0.01	0.4	0.35 0.47	15 10	< 10 < 10	< 0.5 < 0.5	< 5 < 5	0.01	1	36 11	135 227	41 51	4.66 2.65	< 1 < 1	0.03
TM-14 TM-14	657	667	10	53962		17	< 0.01	0.4	0.47	5	< 10 10	< 0.5	< 5	0.04	<1	9	253	41	2.65	< 1	0.02
TM-14 TM-14	667	677	-	53964		17	< 0.01	0.4	0.44	< 5	20	< 0.5	< 5	0.03	<1	3	250	30	1.04	< 1	0.02
	007	0//	10	00004	- Gill		< 0.01	0.2	0.00	~ 5	20	< 0.J	~ ~ ~	0.02	~ '	5	200		1.04	~ 1	0.00
TM-14	1850	1860	10	53966	half	10	0.04	1.4	0.32	70	70	< 0.5	5	0.02	6	10	220	440	2.51	< 1	0.18
TM-14	1860	1870	10	53967		13	0.04	1	0.33	85	50	< 0.5	5	0.02	1	11	234	439	3	< 1	0.19
TM-14	1870	1880	10			5	0.01	0.4	0.3	35	20	< 0.5	< 5	0.02	< 1	11	251	143	4.57	< 1	0.16
TM-14	1880	1890	10	53969	half	9	< 0.01	0.2	0.3	15	30	< 0.5	< 5	0.02	< 1	10	257	74	3.21	< 1	0.15
TM-14	1890	1900	10	53970	half	13	< 0.01	< 0.2	0.25	20	10	< 0.5	< 5	0.02	1	12	241	77	5.64	< 1	0.14
TM-14	1900	1910	10	53971		< 5	< 0.01	0.2	0.31	5	10	< 0.5	5	0.02	< 1	7	241	45	3.47	< 1	0.14
TM-14	1910	1919	9	53972		25	0.01	0.4	0.28	40	< 10	< 0.5	10	0.02	2	16	350	143	11.63	< 1	0.15
TM-14	1919	1929	10	53973		9	< 0.01	0.4	0.34	15	40	< 0.5	< 5	0.02	< 1	13	276	59	5.14	< 1	0.17
TM-14	1929	1940	11	53974		27	< 0.01	0.4	0.3	25	10	< 0.5	< 5	0.02	1	19	307	76	6.04	< 1	0.16
TM-14	1940	1950	10	53975		10	< 0.01	6.6	0.32	10	20	< 0.5	< 5	0.02	< 1	12	264	48	3.36	1	0.19
TM-14 TM-14	1950 1960	1960 1970	10 10	53976 53977		83 18	0.02	0.8	0.27 0.26	110 20	20 20	< 0.5 < 0.5	5 < 5	0.01	1	19 17	340 280	262 525	7.93 4.05	< 1 < 1	0.13 0.13
TM-14	1900	1970	10	53978		21	< 0.03	0.4	0.20	40	20	< 0.5	< 5	0.01	1	14	432	65	7.33	< 1	0.13
TM-14	1980	1990	10	53979		16	< 0.01	< 0.2	0.14	30	30	< 0.5	< 5	0.01	1	9	434	38	4.86	< 1	0.04
TM-14	1990	2000	10	53980		10	< 0.01	< 0.2	0.32	15	20	< 0.5	< 5	0.01	< 1	5	196	19	3.03	< 1	0.07
TM-14	2000	2020	20	53981		21	< 0.01	0.2	0.25	40	30	< 0.5	5	0.01	2	12	367	56	7.47	< 1	0.13
TM-14	2020	2030	10	53982	full	14	< 0.01	0.2	0.22	30	20	< 0.5	< 5	0.01	1	14	342	54	6.6	< 1	0.12
TM-14	2030	2040	10	53983	full	5	0.01	0.2	0.28	15	20	< 0.5	< 5	0.02	< 1	11	278	137	3	< 1	0.16
TM-14	2040	2050	10	53984	half	< 5	0.01	0.4	0.29	10	20	< 0.5	< 5	0.02	< 1	11	293	136	2.72	< 1	0.16
TM-14	2050	2060	10	53985		< 5	0.01	2.2	0.25	10	20	< 0.5	< 5	0.01	< 1	10	317	129	2.78	< 1	0.14
TM-14	2060	2070	10	53986	full	7	0.01	0.6	0.28	10	30	< 0.5	< 5	0.02	< 1	11	224	170	2.79	< 1	0.17
The 4.4	00.10	0050	10	50000	1 16	00	0.00	0.0	0.01			0.5	_	0.04		4-	000	070	5.54		
TM-14	2240	2250	10	53988		38	0.02	2.6	0.34	35	30	< 0.5	5	0.01	1	17	230	276	5.51	< 1	0.2
TM-14 TM-14	2250 2260	2260 2270	10 10	53989 53990		28 9	0.06	3	0.29	90 70	30 40	< 0.5 < 0.5	15 5	0.01	8	18 12	212 202	696 445	5.7 2.85	< 1 < 1	0.18
TM-14 TM-14	2260	2270	10		full	9	0.04	1	0.33	65	40 90	< 0.5	5	0.01	1	12	185	445 802	2.85	<1	0.19
TM-14 TM-14	2270	2280	10	53991		9	0.08	1.2	0.31	20	90 80	< 0.5	10	0.01	< 1	6	195	438	2.26	< 1	0.18
TM-14	2280	2290	10	53992		6	0.04	1.2	0.32	105	80	< 0.5	5	0.01	1	6	195	811	1.99	<1	0.19
	0		10	50000			0.00		0.01		20		Ť								00
TM-14	2460	2470	10	53995	full	7	0.03	0.4	0.31	35	60	< 0.5	< 5	0.01	< 1	6	157	254	2.55	< 1	0.19
TM-14	2470	2480	10	53996		8	< 0.01	< 0.2	0.31	10	70	< 0.5	< 5	0.01	< 1	7	149	55	2.24	< 1	0.18
TM-14	2480	2490	10	53997	full	12	0.04	0.6	0.36	55	60	< 0.5	< 5	0.01	< 1	11	190	464	3.43	< 1	0.22
TM-14	2490	2500		53998		8	0.03	0.4	0.32	85	30	< 0.5	< 5	0.02	1	10	165	266	3.77	< 1	0.2
TM-14	2500	2510	10	53999		9	0.02	0.4	0.34	40	50	< 0.5	< 5	0.02	1	9	189	250	3.72	< 1	0.21
TM-14	2510	2520	10			10	0.02	0.4	0.36	30	40	< 0.5	< 5	0.02	< 1	14	157	218	4.13	< 1	0.2
TM-14	2520	2530	10	54001		17	0.06	2	0.37	95	30	< 0.5	< 5	0.01	2	14	196	681	5.24	< 1	0.22
TM-14	2530	2540	10	54002	full	9	0.04	0.6	0.35	125	40	< 0.5	< 5	0.02	1	15	156	431	4.36	< 1	0.21

Drill Hole	FROM	то	INTERVAL	SAMPLE	CORE	Au	CuT	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	к
	(ft)	(ft)	(ft)			ppb	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%
	. /	. /	. ,			5	0.01	0.2	0.01	5	10	0.5	5	0.01	1	1	1	1	0.01	1	0.01
TM-14	2540	2550	10	54003	full	< 5	0.01	< 0.2	0.39	35	40	< 0.5	< 5	0.02	< 1	17	186	151	4.49	< 1	0.24
TM-14	2550	2560	10	54004	full	9	0.04	0.6	0.34	130	20	< 0.5	< 5	0.02	< 1	18	178	418	5.14	< 1	0.21
TM-14	2560	2570	10	54005	full	6	0.01	0.2	0.35	35	30	< 0.5	< 5	0.02	< 1	14	172	146	3.07	< 1	0.22
TM-14	2570	2580	10	54006	full	32	0.11	1.6	0.36	490	30	< 0.5	5	0.02	2	26	167	1246	6.54	< 1	0.21
TM-14	2580	2590	10			24	0.02	0.8	0.38	160	30	< 0.5	10	0.02	2	31	190	255	7.4	< 1	0.23
TM-14	2590	2599	9	54008	half	< 5	0.05	0.6	0.36	130	40	< 0.5	< 5	0.02	< 1	15	167	511	3.2	< 1	0.2
TM-14	3090	3100	10			21	0.06	2.4	0.3	15	30	< 0.5	10	0.02	1	13	246	595	5.74	< 1	0.16
TM-14	3100	3110				24	0.07	1.8	0.29	10	60	< 0.5	< 5	0.02	< 1	12	188	737	2.91	< 1	0.18
TM-14	3110	3120	10			17	0.05	3	0.31	25	80	< 0.5	5	0.03	3	13	242	547	3.46	< 1	0.19
TM-14	3120	3130				23	0.04	1.6	0.36	55	90	< 0.5	< 5	0.03	1	11	179	455	3.23	< 1	0.19
TM-14	3130	3140	10			< 5	0.03	1	0.33	10	60	< 0.5	< 5	0.03	1	13	185	348	2.57	< 1	0.17
TM-14 TM-14	3140 3150	3150 3160	10 10			5 9	0.03 0.11	0.8	0.35 0.38	50 50	80 70	< 0.5 < 0.5	< 5	0.03	2	14 13	177 202	309 1114	2.74	< 1	0.16 0.19
TM-14 TM-14	3150	3160	10			9 11	0.11	1.4	0.38	50 55	70	< 0.5 < 0.5	< 5 10	0.03	< 1	13	171	2182	2.74	< 1 < 1	0.19
TM-14 TM-14	3160	3170	10			7	0.22		0.33	55 15	70 80	< 0.5	< 5	0.03	< 1	11	171	783	2.61	< 1	0.17
TM-14	3180	3190	10			13	0.07	1.4	0.33	35	30	< 0.5	5	0.03	<1	15	169	956	4.82	< 1	0.2
	5100	5150	10	54019	, un	13	0.09	1.4	0.3	55	50	< 0.J	5	0.00		15	103	350	7.02	~ 1	0.10
TM-14	4400	4410	10	54021	half	14	0.04	1	0.33	25	50	< 0.5	15	0.09	< 1	13	213	435	4.08	< 1	0.21
TM-14	4410	4419		54022		7	0.21	3.8	0.39	35	50	< 0.5	40	0.15	2	11	197	2228	3.1	< 1	0.23
TM-14	4419	4429	10			< 5	0.08	1	0.33	25	30	< 0.5	15	0.11	< 1	12	224	825	4.01	< 1	0.21
TM-14	4429	4439	10	54024	full	6	0.07	0.6	0.32	25	50	< 0.5	10	0.09	< 1	8	161	673	3.45	< 1	0.21
TM-14	4439	4449	10	54025	full	5	0.16	2.6	0.37	85	40	< 0.5	35	0.14	2	12	225	1675	4.3	< 1	0.22
TM-14	4449	4459	10	54026	full	< 5	0.11	2.6	0.39	95	60	< 0.5	25	0.13	4	9	142	1085	2.98	< 1	0.15
TM-14	4459	4469	10	54027	full	7	0.2	5.8	0.41	250	40	< 0.5	30	0.11	6	12	185	2114	3.41	< 1	0.17
TM-14	4469	4479	10	54028	full	< 5	0.14	2.8	0.42	95	60	< 0.5	20	0.14	2	12	166	1544	3.17	< 1	0.16
TM-14	4479	4489	10			9	0.16	3.2	0.39	50	30	< 0.5	25	0.18	3	12	199	1644	3.3	< 1	0.21
TM-14	4489	4500	11	54030		10	0.11	1.8	0.36	40	60	< 0.5	15	0.13	< 1	10	180	1081	3.22	< 1	0.2
TM-14	4500	4510	10			< 5	0.11	1.8	0.4	65	40	< 0.5	10	0.1	2	10	158	1139	3.86	< 1	0.16
TM-14	4510	4520	10			< 5	0.05	1	0.51	55	60	< 0.5	10	0.09	< 1	10	113	534	2.98	< 1	0.1
TM-14	4520	4530	10			10	0.09	1.6	0.48	90	30	< 0.5	15	0.13	1	19	187	981	6.09	< 1	0.15
TM-14	4530	4540	10			< 5	0.04	0.6	0.39	25	50	< 0.5	< 5	0.1	2	14	166	424	3.79	< 1	0.19
TM-14	4540 4550	4550	10			< 5 7	0.09	1.8	0.56	45	60	< 0.5	10	0.2	< 1	13	164	983 887	3.55	< 1	0.14
TM-14 TM-14	4550	4560 4570	10 10			< 5	0.08 0.07	1 3.2	0.41 0.51	35 40	60 50	< 0.5 < 0.5	5 10	0.13	< 1	14 14	155 177	746	3.64 3.7	< 1 < 1	0.21
TM-14 TM-14	4570	4580	10			< 5	0.07	1.6	0.31	40 55	40	< 0.5	10	0.19	1	14	202	1391	4.61	< 1	0.17
1 141-1 14	4070	4000	10	04000	nan	~ 0	0.15	1.0	0.00	55	-10	< 0.5	10	0.17		14	202	1001	4.01	~ 1	0.20
BB-2	40	50	10	54051	half	34	0.47	3.6	0.28	220	20	< 0.5	115	0.01	9	4	185	4922	3.48	< 1	0.19
BB-2 BB-2	50					49	0.48	6.8	0.20	505	50	< 0.5	330	0.01	7	4	161	4940	3.19	< 1	0.13
BB-2	60					26	0.5	5	0.29	90	40	< 0.5	115	0.01	11	3	181	5311	2.81	< 1	0.21
BB-2	70	-	-			45	0.66	4.4	0.32	100	40	< 0.5	100	0.01	2	3	172	7095	4.07	< 1	0.23
BB-2	80					47	0.83	4.6	0.31	145	20	< 0.5	140	0.01	2	3	188	8551	3.45	< 1	0.23
BB-2	90	100	10			38	0.45	3.2	0.28	90	50	< 0.5	55	0.01	8	4	152	4515	3.24	< 1	0.2
BB-2	100	110	10	54057	half	45	0.25	4	0.3	180	40	< 0.5	100	0.01	7	4	155	2513	3.27	< 1	0.21
BB-2	110	120	10			35	0.14	4.4	0.28	120	40	< 0.5	195	0.01	6	5	166	1496	3.48	< 1	0.18
BB-2	120	130	10			50	0.42	3.4	0.29	150	40	< 0.5	235	0.01	7	7	161	4328	3.68	< 1	0.2
BB-2	130	140	10	54060	half	92	0.28	4.4	0.28	470	30	< 0.5	395	0.01	9	5	139	2852	4.1	< 1	0.2
BB-3	14					15	0.04	1.6	0.34	60	40	< 0.5	30	0.01	5	4	181	473	4.2	< 1	0.27
BB-3	20					19	0.16	4.2	0.32	130	40	< 0.5	40	0.01	16	5	163	1655	3.46	< 1	0.24
BB-3	30		-			15	0.26	4.8	0.33	145	40	< 0.5	60	0.01	4	5	176	2854	4.27	< 1	0.24
BB-3	40	50	10	54065	half	16	0.18	5	0.31	165	40	< 0.5	65	0.01	10	4	168	1879	3.37	< 1	0.23

Drill Hole	FROM	то	INTERVA	SAMPLE	CORE	Au	CuT	Ag	AI	As	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	к
	(ft)	(ft)	(ft)			ppb	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%
	. /		. /			5	0.01	0.2	0.01	5	10	0.5	5	0.01	1	1	1	1	0.01	1	0.01
BB-3	50	60	10	54066	half	14	0.57	5.2	0.3	145	50	< 0.5	120	0.01	8	2	184	5992	2.9	< 1	0.22
BB-3	60					14	0.18	4.8	0.33	60	60	< 0.5	50	0.01	9	4	162	2070	3.06	< 1	0.23
BB-3	70	80	10	54068	half	23	0.3	6.4	0.36	40	60	< 0.5	65	0.01	5	4	168	3248	2.62	< 1	0.24
BB-3	80	90	10	54069	half	29	0.39	6.2	0.32	40	60	< 0.5	40	0.01	5	4	151	4082	2.69	< 1	0.23
BB-3	600	610				159	0.13	3.8	0.35	290	20	< 0.5	< 5	0.01	< 1	17	157	1443	3.13	< 1	0.15
BB-3	610					24	0.35	2.2	0.39	130	50	< 0.5	5	0.01	10	66	142	3667	3.19	< 1	0.1
BB-3	620	630				32	0.34	3.8	0.33	245	50	< 0.5	10	0.01	10	35	187	3674	3.27	< 1	0.16
BB-3	630	640				149	0.59	5.8	0.38	415	30	< 0.5	10	0.01	< 1	8	152	6019	3.15	< 1	0.17
BB-3	640					39	0.43	5.4	0.35	110	20	< 0.5	15	0.01	7	45	197	4653	3.42	< 1	0.2
BB-3	650	660				27	0.29	4.6	0.38	280	20	< 0.5	< 5	0.01	5	68	170	3046	3.04	< 1	0.19
BB-3	660	670				28	0.19	2.4	0.34	105	20	< 0.5	< 5	0.01	< 1	10	215	2088	2.19	< 1	0.18
BB-3	670					28	0.31	1.6	0.43	30	30	< 0.5	10	0.01	< 1	8	260	3248	1.55	< 1	0.21
BB-3	680	690				52	0.34	5.4	0.42	65	40	< 0.5	10	0.02	< 1	13	308	3694	1.83	< 1	0.21
BB-3	690	700				32	0.28	1	0.47	50	30	< 0.5	< 5	0.02	< 1	11	281	3038	1.72	< 1	0.23
BB-3	700	710				24	0.26	1	0.5	100	40	< 0.5	< 5	0.02	< 1	9	281	2934	1.28	< 1	0.24
BB-3	710	720	10	54082	nalt	29	0.27	1	0.43	70	30	< 0.5	< 5	0.01	< 1	8	246	2928	1.43	< 1	0.2
BB-4	12.5	20	7.5	54084	half	76	0.39	8.4	0.26	290	20	< 0.5	25	0.05	< 1	3	244	4055	2.51	2	0.15
BB-4	20				half	49	0.76	6.6	0.23	1150	30	< 0.5	25	0.02	2	2	222	8166	2.38	< 1	0.14
BB-4	30	40	10	54086	half	37	0.34	2.6	0.28	330	20	< 0.5	10	0.02	1	3	243	3895	1.97	< 1	0.17
BB-4	40	50	10	54087	' half	62	0.22	5.2	0.26	330	30	< 0.5	< 5	0.02	< 1	6	221	2570	2.53	< 1	0.16
BB-4	50	60	10	54088	half	40	0.62	6.4	0.29	855	40	< 0.5	20	0.02	3	5	199	6357	2.63	< 1	0.18
BB-4	60	70	10	54089	half	30	0.6	1.8	0.3	250	40	< 0.5	5	0.01	1	8	93	6084	2.39	< 1	0.18
BB-4	70	80	10	54090	half	53	0.21	1.2	0.28	320	30	< 0.5	< 5	0.02	< 1	10	171	2181	3.59	< 1	0.18
BB-4	80					29	0.27	2.6	0.2	415	20	< 0.5	< 5	0.01	2	5	251	2980	1.73	< 1	0.12
BB-4	90	100				35	0.67	3.8	0.21	825	40	< 0.5	20	0.02	3	2	253	7038	1.66	< 1	0.13
BB-4	100	110				47	1.44	11.2	0.23	1055	40	< 0.5	30	0.02	7	2	225	> 10000	2.37	< 1	0.15
BB-4	110					42	0.36	2.4	0.26	370	30	< 0.5	15	0.02	2	4	210	3778	2.95	< 1	0.16
BB-4	120	130				36	0.12	1	0.25	80	30	< 0.5	5	0.02	< 1	7	242	1296	3.17	< 1	0.16
BB-4	130	140				33	0.47	4.2	0.24	35	30	< 0.5	20	0.02	< 1	5	251	5199	3.01	< 1	0.15
BB-4	140					32	0.41	2.2	0.25	240	30	< 0.5	15	0.02	1	6	234	4287	2.99	< 1	0.16
BB-4 BB-4	150 160	160 170				48 51	0.46	2.8 1.8	0.32 0.26	735 460	30 20	< 0.5 < 0.5	15 10	0.02	3	5 5	270 232	5031 2420	2.93 2.93	< 1	0.21
BB-4	170	170				35	0.23	2.2	0.28	460	30	< 0.5	10	0.02	< 1	5	232	3290	3.05	< 1 < 1	0.15
BB-4	170	180				35	0.29	0.6	0.28	30 20	20	< 0.5	5	0.02	< 1	4	228	3290	2.69	< 1	0.17
BB-4	190					60	0.05	0.0	0.25	25	40	< 0.5	< 5	0.02	<1	6	203	606	2.03	< 1	0.14
	190	200		J4102		00	0.05	0.0	0.30	20	40	< 0.5	< 0	0.01	< I	U	220	000	2.40	< 1	0.2
BB-6	20	30	10	54104	half	29	0.58	14	0.29	560	40	< 0.5	115	0.01	3	4	208	6245	3.99	< 1	0.21
BB-6	30					14	0.21	2.8	0.36	140	50	< 0.5	70	0.01	7	4	203	2390	3.61	< 1	0.25
BB-6	40	-	-			17	0.13	6.2	0.33	85	40	< 0.5	40	0.01	10	4	198	1531	3.86	< 1	0.24
BB-6	50					21	0.46	5.4	0.3	100	40	< 0.5	95	0.01	2	5	205	4932	4.31	< 1	0.21
BB-6	60				1	24	0.32	6.6	0.28	85	30	< 0.5	45	0.01	4	5	200	3453	4.21	< 1	0.19
BB-6	70	80	10	54109	half	7	0.26	7.6	0.3	360	40	< 0.5	65	0.01	2	4	204	2701	3.81	< 1	0.21
BB-6	80		10			28	0.54	18	0.26	800	30	< 0.5	330	0.01	4	7	206	5567	4.54	< 1	0.18
BB-6	90	100	10	54111	half	18	0.17	10.2	0.31	565	40	< 0.5	115	0.01	6	11	218	1866	3.96	< 1	0.23
BB-6	100	110		54112	half	28	0.57	12	0.32	1800	30	< 0.5	150	0.01	8	13	179	5804	4.25	< 1	0.2
BB-6	110	120	10	54113	half	46	0.15	3	0.35	265	50	< 0.5	55	0.01	5	6	204	1461	3.58	< 1	0.19
DD 6	300	240	40	EAAAF	bolf	26	0.00	2.0	0.28	065	20	- 0.5	25	0.02	2	16	100	2040	4.06	- 1	0.40
BB-6 BB-6	300	310 320				36 12	0.39 0.24	3.8 5.6	0.28	965 335	30 60	< 0.5 < 0.5	25 35	0.02	2	16	193 195	3949 2556	4.26 3.27	< 1 < 1	0.18
BB-6 BB-6	310					20	0.24	5.6	0.35	335 860	60 50	< 0.5	35 45	0.01	5	25	195	2556 3888	4.14	< 1	0.23
0-00	320	330	10	54117	nair	20	0.38	3.8	0.33	860	50	< 0.5	45	0.01	5	25	185	3888	4.14	< 1	0.22

(ft) BB-6 BB-6	t) 330	(ft)	(ft)									Be									к
-	330					ppb	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%
-	330					5	0.01	0.2	0.01	5	10	0.5	5	0.01	1	1	1	1	0.01	1	0.01
BB-6		340	10	54118	half	53	0.28	2.6	0.34	525	40	< 0.5	20	0.02	1	32	202	2897	3.99	< 1	0.22
•	340	350	10	54119	half	32	0.65	8.4	0.29	1640	30	< 0.5	50	0.01	2	20	187	6995	4.17	< 1	0.19
BB-6	350	360	10	54120	half	58	0.12	1.4	0.33	245	60	< 0.5	10	0.01	< 1	29	215	1223	3.9	< 1	0.21
BB-6	360	370	10		half	151	4.68	100.2	0.28	3035	20	< 0.5	90	0.01	2	30	241	> 10000	8.13	< 1	0.2
BB-6	370	380	10	54122		31	0.49	3.4	0.25	610	40	< 0.5	15	0.01	< 1	13	349	5651	4.59	< 1	0.16
BB-6	380	390	10	54123		52	1.03	8	0.22	2790	30	< 0.5	20	0.01	1	7	390	> 10000	4.64	< 1	0.13
BB-6	390	400	10	54124		53	1.13	17.2	0.26	2555	30	< 0.5	10	0.01	1	4	329	> 10000	3.33	< 1	0.17
BB-6	400	410	10	54125		49	1.17	11.6	0.24	4050	40	< 0.5	20	0.01	2	5	395	> 10000	4.04	< 1	0.15
BB-6	410	420	10	54126		40	0.76	11	0.25	2150	70	< 0.5	15	0.01	5	14	376	8238	2.99	< 1	0.14
BB-6 BB-6	420 430	430 440	10	54127		48 81	0.53 0.76	8.4 10.2	0.31 0.34	1585 1665	20 70	< 0.5 < 0.5	30 40	0.01	5	10 15	299 272	5641 7862	4.16	< 1	0.18
BB-6	430	440	10 10	54128 54129		145	1.76	33.4	0.34	4285	70 60	< 0.5	40 20	0.01	3	15	272	> 10000	4.39 4.88	< 1	0.2
BB-0 BB-6	440	450 460	10	54129		26	0.22	2.8	0.35	4285	60 50	< 0.5	20	0.01	3	20	224	2439	4.88	< 1	0.22
BB-6	450	400	10	54130		15	0.22	3.2	0.44	655	40	< 0.5	15	0.01	2	20	233	2439	3.35	< 1	0.20
BB-6	400	470	10	54132		26	0.25	4.4	0.4	740	20	< 0.5	25	< 0.01	7	6	194	3393	2.5	< 1	0.24
BB-6	480	490	10	54133		20	0.43	3	0.43	210	30	< 0.5	20	0.01	2	12	173	4241	3.18	< 1	0.26
	100	100	10	01100	nan	21	0.10	Ŭ	0.10	210	00	0.0	20	0.01	-	12	110	1211	0.10	~ 1	0.20
TM-13	3900	3909	9	54135	full	18	< 0.01	5.8	1.5	115	20	< 0.5	5	18.5	22	10	80	75	5.21	< 1	0.05
TM-13	3909	3919	10	54136		22	< 0.01	7.6	2.22	115	< 10	< 0.5	5	20.3	35	13	93	31	4.97	< 1	0.04
TM-13	3919	3931	12	54137	half	63	0.04	6	0.65	90	30	< 0.5	5	1.61	24	15	419	480	2.66	< 1	0.25
TM-13	3931	3940	9	54138	full	12	< 0.01	3.4	1.72	70	< 10	0.5	< 5	14.54	14	8	196	42	3.29	< 1	0.2
TM-13	3940	3950	10	54139	half	26	< 0.01	5	1.53	75	10	< 0.5	< 5	8.21	13	10	426	44	3.39	< 1	0.26
TM-13	3950	3962	12	54140	full	22	< 0.01	4.8	1.05	65	< 10	< 0.5	10	5.01	5	6	403	60	1.81	< 1	0.32
TM-13	3962	3972	10	54141	half	34	0.05	10.8	0.76	85	20	< 0.5	25	1.01	14	10	462	498	2.09	< 1	0.25
TM-13	3972	3979	7	54142		44	0.63	55.6	0.55	250	< 10	< 0.5	20	1.45	236	48	471	6732	3.28	< 1	0.16
TM-13	3979	3990	11	54143		20	0.01	8.8	2.04	140	< 10	< 0.5	10	12.67	29	13	262	107	2.79	< 1	0.12
TM-13	3990	4000	10	54144		24	< 0.01	3.8	2.98	145	< 10	< 0.5	< 5	13.43	22	14	133	42	2.82	< 1	0.29
TM-13	4000	4009	9	54145		12	< 0.01	2.4	1.24	55	< 10	< 0.5	< 5	22.71	11	7	55	17	2.35	< 1	0.03
TM-13	4009	4019	10	54146		13	< 0.01	2.8	2.51	155	< 10	< 0.5	< 5	9.66	18	14	235	37	3.64	< 1	0.36
TM-13	4019	4030	11	54147		14	< 0.01	1	0.38	45	< 10	< 0.5	< 5	16.95	9	3	250	18	0.63	< 1	0.2
TM-13	4030	4040	10	54148	full	10	< 0.01	0.6	0.1	30	< 10	< 0.5	< 5	24.35	4	2	118	11	0.27	< 1	0.07
TOULOA	4400	44.00		E 44 E 4	4 11		.0.01	0.0	0.57	40	40	. 0.5		0.45		_	207	40	1.00		0.07
TCH-2A	4100	4109	9	54151		< 5 9	< 0.01	0.2	0.57	10	10 10	< 0.5	< 5 < 5	0.15	< 1	5 5	207 305	18 95	1.82	< 1	0.27
TCH-2A	4109	4120	11	54152	TUII	9	< 0.01	0.6	0.49	15	10	< 0.5	< 5	0.13	1	5	305	95	2.68	< 1	0.24
TCH-2A	4160	4170	10	54153	full	21	< 0.01	< 0.2	0.53	10	10	< 0.5	< 5	0.11	< 1	5	262	15	2	< 1	0.22
TCH-2A	4170	4180	10	54154		< 5	< 0.01	< 0.2	0.33	10	20	< 0.5	< 5	0.11	<1	3	202	22	1.51	< 1	0.22
TCH-2A	4170	4180	10	54155		< 5	< 0.01	< 0.2	0.48	10	10	< 0.5	< 5	0.14	1	4	205	16	2.44	< 1	0.23
1911-27	-100	-150	10	0-100	1 dil	~ 5	< 0.01	< 0.2	0.01	10	10	< 0.0	~ 5	0.15		-+	200	10	2.77	~ 1	0.20
TCH-2A	4356	4365	٩	54157	full	6	0.04	1.4	2.08	15	< 10	< 0.5	< 5	9.81	1	5	285	363	4.35	< 1	0.11
TCH-2A	4365	4375	10	54158	-	< 5	0.01	1	1.45	10	110	< 0.5	< 5	10.79	< 1	6	218	192	3.94	< 1	0.03
TCH-2A	4375	4383		54159		6	0.03	4.4	0.76	25	100	0.5	10	7.34	1	9	123	421	3.35	< 1	0.03
TCH-2A	4383	4390	7	54160		< 5	< 0.01	1	1.81	15	30	< 0.5	< 5	12.85	< 1	7	233	62	4.07	< 1	0.13

Drill Hole	FROM	то	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	Tİ	U	v	w
	(ft)	(ft)	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
			10	0.01	5	2	0.01	1	0.001	2	0.01	5	0.1	1	5	0.01	10	10	1	10
TM-14	540		< 10	< 0.01	15	12	0.04	8	0.001	6	2.86	5	0.2	10	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	550		< 10	< 0.01	15	4	0.05	3	0.003	22	1.06	< 5	0.2	28	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	559		< 10	0.01	15	4	0.05	16	0.003	28	4.35	15	0.3	8	< 5	< 0.01	< 10	< 10	6	20
TM-14	569		< 10	0.02	25	10	0.05	16	0.003	32	4.05	5	0.3	6	< 5	< 0.01	< 10	< 10	5	10
TM-14	578		< 10	0.01	10	18	0.05	16	0.004	30	4.73	10	0.3	12	< 5	< 0.01	< 10	< 10	4	20
TM-14	590		< 10	< 0.01	10	24	0.05	35	0.004	14	5.25	10	0.3	26	< 5	< 0.01	< 10	< 10	5	< 10
TM-14 TM-14	600 607	607 617	< 10 < 10	< 0.01 < 0.01	20 30	22 20	0.06	39 23	0.003	12 10	5.21 4.5	5 5	0.2	31 36	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	3	< 10 < 10
TM-14	617	627	< 10	< 0.01	20	14	0.03	36	0.003	8	5.59	5	0.2	30	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	627	637	< 10	< 0.01	25	10	0.04	28	0.003	8	4.54	< 5	0.2	30	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	637	647	< 10	< 0.01	10	4	0.05	30	0.002	6	5.31	< 5	0.3	26	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	647	657	< 10	< 0.01	30	8	0.04	8	0.002	12	2.82	< 5	0.2	20	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	657	667	< 10	< 0.01	20	10	0.05	6	0.001	8	2.65	< 5	0.1	11	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	667	677	< 10	< 0.01	15	14	0.04	< 1	0.002	10	0.98	< 5	0.1	27	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	1850	1860	< 10	0.02	25	6	0.05	5	0.002	22	2.77	15	0.1	6	< 5	< 0.01	< 10	< 10	2	20
TM-14	1860	1870	< 10	0.01	20	8	0.05	6	0.003	20	3.26	10	0.2	10	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	1870	1880	< 10	< 0.01	20	8	0.04	6	0.002	12	5.07	10	< 0.1	12	< 5	< 0.01	< 10	< 10	2	< 10
TM-14 TM-14	1880 1890	1890 1900	< 10 < 10	< 0.01 < 0.01	20 20	6	0.04	5	0.002	10 8	3.46 6.38	5 10	< 0.1 < 0.1	10 11	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10
TM-14	1900	1900	< 10	< 0.01	20	4	0.04	3	0.002	10	3.77	5	< 0.1	11	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	1910	1919	< 10	< 0.01	30	6	0.03	3	0.001	18	15.28	15	< 0.1	22	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	1919	1929	< 10	< 0.01	25	12	0.04	5	0.002	18	5.73	10	< 0.1	15	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	1929	1940	< 10	< 0.01	20	10	0.05	9	0.002	12	6.82	15	< 0.1	13	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	1940	1950	< 10	< 0.01	25	8	0.05	8	0.002	14	3.64	10	0.1	10	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	1950	1960	< 10	< 0.01	20	36	0.05	6	0.002	16	9.77	15	< 0.1	16	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	1960	1970	< 10	< 0.01	20	16	0.05	8	0.003	8	4.48	5	0.1	12	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	1970	1980	< 10	< 0.01	25	26	0.04	3	0.001	12	8.35	10	< 0.1	16	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	1980	1990	< 10	< 0.01	25	14	0.04	2	0.002	10	5.23	5	< 0.1	15	< 5	< 0.01	< 10	< 10	2	< 10
TM-14 TM-14	1990 2000	2000 2020	< 10 < 10	< 0.01 < 0.01	15 25	22 34	0.04	< 1	0.001	6 16	3.28 9.1	< 5 10	< 0.1 < 0.1	9 20	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10
TM-14	2000	2020	< 10	< 0.01	25	22	0.04	4	0.002	10	7.61	10	< 0.1	16	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	2020	2030	< 10	< 0.01	20	10	0.04	7	0.002	14	3.2	5	< 0.1	9	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	2040	2050	< 10	< 0.01	25	10	0.05	6	0.002	14	2.85	< 5	< 0.1	10	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	2050	2060	< 10	< 0.01	20	6	0.05	3	0.002	12	2.88	5	0.1	9	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	2060	2070	< 10	< 0.01	20	4	0.05	6	0.002	12	2.98	< 5	0.1	7	< 5	< 0.01	< 10	< 10	2	10
TM-14	2240	2250	< 10	< 0.01	15	4	0.04	2	0.003	12	6.22	25	< 0.1	10	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	2250	2260	< 10	< 0.01	15	26	0.05	2	0.003	16	6.68	50	< 0.1	10	< 5	< 0.01	< 10	< 10	2	30
TM-14 TM-14	2260 2270	2270 2280	< 10 < 10	< 0.01	15 15	38 < 2	0.06	3	0.003	10 8	3.11 2.15	25 20	0.1	7 5	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10
TM-14 TM-14	2270	2280	< 10	0.01	15	< 2	0.05	< 1	0.002	8	2.15	20 5	< 0.1	5	< 5	< 0.01	< 10	< 10	1	< 10
TM-14	2280		< 10	0.01	20	< 2	0.03	< 1	0.002	12	2.43	10	< 0.1	5	< 5	< 0.01	< 10	< 10	1	< 10
	00	2000	. 10	0.01	_0		0.01		0.000		/						. 10		· · · ·	. 10
TM-14	2460	2470	< 10	0.01	15	52	0.05	< 1	0.003	8	2.83	15	< 0.1	8	< 5	< 0.01	< 10	< 10	1	< 10
TM-14	2470	2480	< 10	0.01	10	24	0.04	2	0.003	8	2.44	5	0.1	6	< 5	< 0.01	< 10	< 10	1	< 10
TM-14	2480	2490	< 10	0.01	15	42	0.05	7	0.004	10	3.82	65	0.2	10	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	2490	2500	< 10	0.01	10	66	0.05	8	0.004	8	4.24	20	0.1	8	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	2500	2510	< 10	0.01	15	20	0.05	8	0.003	8	4.17	10	0.2	8	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	2510	2520	< 10	< 0.01	15	12	0.05	7	0.002	6	4.66	15	0.1	10	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	2520	2530	< 10	< 0.01	15	30	0.05	2	0.004	12	6.01	40	< 0.1	12	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	2530	2540	< 10	< 0.01	15	24	0.04	6	0.003	6	4.97	20	0.1	9	< 5	< 0.01	< 10	< 10	2	< 10

Drill Hole	FROM	то	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	Tİ	U	v	w
	(ft)	(ft)	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
			10	0.01	5	2	0.01	1	0.001	2	0.01	5	0.1	1	5	0.01	10	10	1	10
TM-14	2540	2550	< 10	0.01	15	16	0.05	9	0.002	4	5.04	10	0.2	9	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	2550	2560	< 10	< 0.01	10	30	0.04	7	0.002	6	5.86	10	0.1	10	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	2560	2570	< 10	< 0.01	10	10	0.05	6	0.002	4	3.38	5	0.1	8	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	2570	2580	< 10	< 0.01	10	50	0.05	8	0.005	10	7.75	40	0.1	13	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	2580	2590	< 10	0.01	15	10	0.05	13	0.002	16	9.24	15	0.1	16	< 5	< 0.01	< 10	< 10	5	< 10
TM-14	2590	2599	< 10	0.02	15	26	0.05	9	0.003	10	3.59	15	0.2	7	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	3090		< 10	0.01	30	26	0.04	5	0.005	34	6.55	10	0.2	11	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	3100		< 10	0.01	25	30	0.05	5	0.004	10	3.17	< 5	0.2	6	< 5	< 0.01	< 10	< 10	2	< 10
TM-14	3110		< 10	0.02	35	6	0.05	6	0.008	396	3.81	15	0.2	10	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	3120	3130	< 10	0.03	55	4	0.05	7	0.011	50	3.56	15	0.3	9	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	3130	3140	< 10	0.02	40	18	0.05	4	0.006	28	2.79	5	0.2	6	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	3140	3150	< 10	0.02	45	8	0.05	6	0.006	28	2.98	10	0.3	6	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	3150	3160	< 10	0.02	40	12	0.05	6	0.01	18	2.95	20	0.3	8	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	3160		< 10	0.02	40	8	0.05	5	0.013	20	2.86	10	0.3	8	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	3170		< 10	0.02	35	6	0.05	5	0.008	24	3.17	5	0.2	7	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	3180	3190	< 10	0.02	30	6	0.05	6	0.006	18	5.47	10	0.2	9	< 5	< 0.01	< 10	< 10	3	< 10
TM-14	4400	4410	< 10	0.02	25	14	0.04	5	0.029	24	4.54	5	0.3	8	15	< 0.01	< 10	< 10	3	< 10
TM-14 TM-14	4400		< 10	0.02	25 50	6	0.04	5	0.029	24 104	4.54	5 30	0.3	8	15	< 0.01	< 10	< 10	3	< 10 10
TM-14	4410		< 10 10	0.04	30 30	4	0.05	5	0.037	24	4.44	30 15	0.3	8	10	< 0.01	< 10	< 10	4	10 < 10
TM-14 TM-14	4419	-	10	0.02	25	2	0.05	2	0.038	16	3.83	5	0.3	7	10	< 0.01	< 10	< 10	2	< 10
TM-14	4429		< 10	0.02	35	2	0.05	6	0.05	68	4.76	15	0.2	9	10	< 0.01	< 10	< 10	3	10
TM-14	4449	4459	< 10	0.03	40	4	0.05	5	0.03	94	3.34	10	0.3	11	< 5	< 0.01	< 10	< 10	3	10
TM-14	4459		< 10	0.03	35	14	0.05	5	0.039	138	3.87	10	0.2	12	< 5	< 0.01	< 10	< 10	3	20
TM-14	4469		< 10	0.02	40	4	0.05	6	0.052	68	3.53	10	0.3	15	< 5	< 0.01	< 10	< 10	4	10
TM-14	4479	4489	< 10	0.04	65	16	0.05	8	0.057	86	3.64	20	0.2	8	10	< 0.01	< 10	< 10	3	10
TM-14	4489		< 10	0.03	45	10	0.05	6	0.044	54	3.54	20	0.3	9	5	< 0.01	< 10	< 10	3	< 10
TM-14	4500		< 10	0.02	30	6	0.05	6	0.036	54	4.38	10	0.3	14	< 5	< 0.01	< 10	< 10	3	20
TM-14	4510	4520	< 10	0.02	30	6	0.04	6	0.03	44	3.32	< 5	0.4	16	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	4520	4530	< 10	0.02	30	6	0.05	6	0.049	56	7.27	10	0.3	19	< 5	< 0.01	< 10	< 10	5	20
TM-14	4530	4540	< 10	0.02	30	6	0.05	6	0.035	40	4.27	< 5	0.3	12	< 5	< 0.01	< 10	< 10	4	10
TM-14	4540	4550	< 10	0.02	30	4	0.05	7	0.081	70	3.95	5	0.5	14	< 5	< 0.01	< 10	< 10	5	< 10
TM-14	4550	4560	< 10	0.03	30	2	0.05	5	0.05	48	4.08	< 5	0.4	10	< 5	< 0.01	< 10	< 10	4	< 10
TM-14	4560	4570	< 10	0.03	55	6	0.05	9	0.062	66	4.11	10	0.4	11	< 5	< 0.01	< 10	< 10	6	< 10
TM-14	4570	4580	< 10	0.04	40	8	0.05	8	0.068	60	5.18	15	0.3	9	10	< 0.01	< 10	< 10	5	10
BB-2	40		< 10	< 0.01	15	2	0.05	< 1	0.011	40	4.09	20	0.3	8	< 5	< 0.01	< 10	< 10	2	10
BB-2	50		< 10	< 0.01	25	< 2	0.05	< 1	0.011	472	3.79	55	0.3	7	< 5	< 0.01	< 10	< 10	1	20
BB-2	60		< 10	0.01	20	< 2	0.05	< 1	0.012	188	3.33	5	0.3	6	< 5	< 0.01	< 10	< 10	2	10
BB-2	70		< 10	0.01	20	< 2	0.04	< 1	0.013	100	4.86	10	0.3	8	< 5	< 0.01	< 10	< 10	2	< 10
BB-2	80		< 10	< 0.01	20	6	0.04	< 1	0.018	290	4.21	25	0.3	6	< 5	< 0.01	< 10	< 10	2	< 10
BB-2	90		< 10	< 0.01	20	< 2	0.05	< 1	0.01	552	3.86	5	0.3	6	< 5	< 0.01	< 10	< 10	2	20
BB-2	100		< 10	0.01	20	6	0.05	< 1	0.008	262	3.77	20	0.2	6	< 5	< 0.01	< 10	< 10	2	10
BB-2	110		< 10	< 0.01	20	14	0.05	< 1	0.004	250	3.96	25	0.2	6	< 5	< 0.01	< 10	< 10	2	10
BB-2	120		< 10	0.01	20	< 2	0.05	< 1	0.011	420	4.33	35	0.2	6	< 5	< 0.01	< 10	< 10	2	20
BB-2	130	140	< 10	0.01	15	< 2	0.05	< 1	0.008	394	4.78	80	0.2	7	< 5	< 0.01	< 10	< 10	2	20
DD 2	4.4	20	. 40	0.02	35	10	0.05	. 4	0.000	00	4.25	10	0.2	7		< 0.01	< 10	- 10	2	10
BB-3 BB-3	14		< 10	0.02	35 45	18	0.05	< 1	0.002	62	-	10 30	0.2		< 5		-	< 10		-
BB-3 BB-3	30		< 10 < 10	0.02	45 30	10 30	0.04	< 1 < 1	0.005	34 52	4.06 4.89	30 15	0.2	6 6	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10	1	30 < 10
	30 40			0.02		30 10	0.04			52 32	4.89	15	0.2	5				< 10		< 10 20
BB-3	40	50	< 10	0.02	35	10	0.04	< 1	0.006	32	3.84	10	0.2	5	< 5	< 0.01	< 10	< 10	2	20

Drill Hole	FROM	то	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	v	w
	(ft)	(ft)	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	. ,		10	0.01	5	2	0.01	1	0.001	2	0.01	5	0.1	1	5	0.01	10	10	1	10
BB-3	50	60	< 10	0.01	25	4	0.05	< 1	0.014	26	3.38	5	0.2	5	< 5	< 0.01	< 10	< 10	1	< 10
BB-3	60	0 70	< 10	0.02	40	4	0.05	< 1	0.008	28	3.51	5	0.2	5	< 5	< 0.01	< 10	< 10	1	20
BB-3	70	0 80	< 10	0.02	40	< 2	0.05	< 1	0.008	38	3	< 5	0.2	4	< 5	< 0.01	< 10	< 10	1	10
BB-3	80	90	< 10	0.02	35	< 2	0.05	< 1	0.01	36	3.18	< 5	0.2	5	< 5	< 0.01	< 10	< 10	1	10
BB-3	600		< 10	< 0.01	15	18	0.05	9	0.004	16	1.19	< 5	0.2	7	< 5	< 0.01	< 10	< 10	4	< 10
BB-3	610		< 10	< 0.01	20	6	0.04	29	0.008	38	3.68	< 5	0.1	5	< 5	< 0.01	< 10	< 10	1	< 10
BB-3	620		< 10	< 0.01	25	22	0.05	21	0.008	64	3.74	< 5	0.2	5	< 5	< 0.01	< 10	< 10	1	< 10
BB-3	630		< 10	< 0.01	25	42	0.05	7	0.012	64	2.54	< 5	0.3	5	< 5	< 0.01	< 10	< 10	5	< 10
BB-3	640		< 10	0.01	30	12	0.05	28	0.01	44	4.01	< 5	0.2	5	< 5	< 0.01	< 10	< 10	2	10
BB-3	650		< 10	< 0.01	15	12	0.06	27	0.008	24	3.46	< 5	0.2	5	< 5	< 0.01	< 10	< 10	2	< 10
BB-3 BB-3	660 670		< 10 < 10	< 0.01 < 0.01	15 15	28 10	0.06	4	0.006	10 6	2.38	< 5 < 5	0.2	6 12	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10
BB-3	680		< 10	< 0.01	20	10	0.05	10	0.008	8	2	5	0.2	12	< 5	< 0.01	< 10	< 10	3	< 10
BB-3	690		< 10	< 0.01	20	22	0.05	8	0.012	° 6	1.92	5 < 5	0.3	17	< 5	< 0.01	< 10	< 10	3	< 10
BB-3	700		< 10	< 0.01	15	18	0.05	5	0.011	4	1.46	5	0.2	22	< 5	< 0.01	< 10	< 10	4	< 10
BB-3	710		< 10	< 0.01	15	22	0.05	3	0.01	4	1.52	< 5	0.2	17	< 5	< 0.01	< 10	< 10	3	< 10
-								5											5	
BB-4	12.5	5 20	< 10	< 0.01	25	14	0.05	3	0.01	14	2.74	25	0.2	6	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	20	30	< 10	< 0.01	20	10	0.05	2	0.016	20	2.77	75	0.3	6	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	30	40	< 10	0.01	25	6	0.04	3	0.009	14	2.14	25	0.2	5	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	40		< 10	0.01	25	8	0.05	4	0.006	14	2.77	15	0.2	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	50		< 10	0.01	20	8	0.04	5	0.015	18	3.09	35	0.3	8	< 5	< 0.01	< 10	< 10	3	< 10
BB-4	60		< 10	< 0.01	10	24	0.05	8	0.014	10	2.83	5	0.3	9	< 5	< 0.01	< 10	< 10	4	< 10
BB-4	70		< 10	0.01	25	6	0.05	7	0.007	10	4.06	20	0.2	8	< 5	< 0.01	< 10	< 10	3	< 10
BB-4	80		< 10	< 0.01	15	4	0.04	1	0.007	6	1.86	20	0.1	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-4 BB-4	90		< 10 < 10	< 0.01 < 0.01	20 15	4	0.05	< 1 < 1	0.016	10 16	1.92 3.03	30 60	0.2	6 6	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10
BB-4 BB-4	110		< 10	0.01	20	4	0.04	< 1	0.042	8	3.03	60 35	0.3	6	< 5 < 5	< 0.01	< 10 < 10	< 10	2	< 10 < 10
BB-4 BB-4	120		< 10	0.01	30	4	0.03	7	0.004	10	3.35	10	0.2	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	130		< 10	< 0.01	25	6	0.04	3	0.004	10	3.38	10	0.1	6	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	140		< 10	< 0.01	25	22	0.04	3	0.009	10	3.39	15	0.2	6	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	150		< 10	0.01	25	18	0.05	5	0.011	26	3.35	30	0.2	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	160		< 10	0.01	25	6	0.05	5	0.007	18	3.28	30	0.1	7	< 5	< 0.01	< 10	< 10	1	< 10
BB-4	170	180	< 10	0.01	20	6	0.05	6	0.01	14	3.4	30	0.2	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	180	190	< 10	< 0.01	15	4	0.05	4	0.008	12	2.99	< 5	0.1	6	< 5	< 0.01	< 10	< 10	2	< 10
BB-4	190	200	< 10	0.01	20	10	0.05	3	0.004	10	2.62	5	0.2	10	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	20		< 10	0.01	25	< 2	0.05	< 1	0.014	30	4.71	100	0.2	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	30		< 10	0.02	35	< 2	0.05	< 1	0.008	40	4.17	15	0.2	7	< 5	< 0.01	< 10	< 10	2	20
BB-6	40		< 10	0.02	40	< 2	0.05	< 1	0.006	34	4.5	15	0.2	7	< 5	< 0.01	< 10	< 10	2	30
BB-6 BB-6	50 60		< 10 < 10	0.01	25 25	< 2 10	0.04	< 1 < 1	0.013	42 26	5 4.88	10 30	0.2	7	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 10
BB-6	70	-	< 10	0.01	25 25	< 2	0.05	< 1	0.009	26 18	4.88	30 165	0.2	6	< 5 < 5	< 0.01	< 10 < 10	< 10	2	10 < 10
BB-6	80		< 10	< 0.02	25 20	< 2	0.05	<1	0.008	24	4.37 5.38	305	0.2	6	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	90		< 10	0.01	35	< 2	0.03	<1	0.014	40	4.57	65	0.2	6	< 5	< 0.01	< 10	< 10	2	20
BB-6	100		< 10	0.01	35	< 2	0.04	< 1	0.000	32	5.16	130	0.2	7	< 5	< 0.01	< 10	< 10	2	20
BB-6	110		< 10	0.01	35	< 2	0.03	<1	0.012	26	4.07	40	0.2	6	< 5	< 0.01	< 10	< 10	1	10
				5.02			5.01		2.000			.5		3						.0
BB-6	300	310	< 10	0.01	30	6	0.05	2	0.01	18	4.99	80	0.1	7	< 5	< 0.01	< 10	< 10	1	< 10
BB-6	310		< 10	0.02	35	< 2	0.06	< 1	0.007	14	3.73	135	0.2	6	< 5	< 0.01	< 10	< 10	1	< 10
BB-6	320	330	< 10	0.01	25	< 2	0.05	4	0.01	16	4.87	25	0.1	7	< 5	< 0.01	< 10	< 10	1	10

Drill Hole	FROM	то	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	Tİ	U	v	w
	(ft)	(ft)	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
			10	0.01	5	2	0.01	1	0.001	2	0.01	5	0.1	1	5	0.01	10	10	1	10
BB-6	330	340	< 10	0.01	25	< 2	0.06	6	0.008	20	4.6	65	0.2	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	340		< 10	0.01	25	2	0.05	2	0.014	18	5.08	185	0.2	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	350		< 10	0.01	25	< 2	0.05	6	0.005	30	4.39	50	0.1	8	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	360		< 10	< 0.01	25	56	0.05	7	0.008	30	11.94	60	0.7	15	< 5	< 0.01	< 10	< 10	3	< 10
BB-6	370		< 10	< 0.01	25	30	0.05	3	0.012	24	5.27	25	0.2	9	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	380		< 10	< 0.01	25	50	0.06	3	0.024	36	5.7	105	0.2	11	< 5	< 0.01	< 10	< 10	3	< 10
BB-6	390		< 10	< 0.01	25	24	0.05	< 1	0.022	18	4.22	75	0.3	7	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	400		< 10	< 0.01	25	36	0.04	< 1	0.03	68	5.1	185	0.3	11	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	410		< 10	< 0.01	25	38	0.05	7	0.018	30	3.54	190	0.2	8	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	420		< 10	< 0.01	30	32	0.07	2	0.013	20	4.87	95	0.2	11	< 5	< 0.01	< 10	< 10	2	< 10
BB-6	430		< 10	0.01	20	16	0.06		0.02	36	5.29	145	0.2	12	< 5	< 0.01	< 10	< 10	2	< 10
BB-6 BB-6	440 450		< 10 < 10	0.01	20 25	36	0.06	2	0.05	30 32	6.42 4.11	100 75	0.4	11 10	< 5 < 5	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10
BB-6			< 10		25	8		4	0.009	32 20	3.88	75 55	0.2				< 10	-	2	< 10
BB-6	460 470		< 10	0.02	20	16	0.05	< 1	0.008	20	2.91	75	0.2	10 9	< 5 < 5	< 0.01 < 0.01	< 10	< 10 < 10	2	< 10
BB-6	480		< 10	0.02	20	20	0.05	< 1	0.003	16	3.74	30	0.2	12	< 5	< 0.01	< 10	< 10	2	< 10
88-0	400	+30	< 10	0.02	20	20	0.00	~ 1	0.011	10	5.74		0.2	12	< 0	< 0.01	< 10	< 10		< 10
TM-13	3900	3909	30	3.99	> 10000	6	0.38	21	0.033	2746	0.76	5	32	93	< 5	0.02	40	< 10	205	50
TM-13	3909	3919	30	3.14	> 10000	18	0.42	41	0.155	1796	1.17	5	25.3	180	< 5	0.06	40	< 10	234	70
TM-13	3919	3931	30	0.79	2715	68	0.07	25	0.153	2880	2.62	10	2.2	19	< 5	< 0.01	< 10	< 10	34	30
TM-13	3931	3940	30	2.46	> 10000	20	0.31	20	0.191	1118	0.94	< 5	15	107	< 5	0.03	30	< 10	109	30
TM-13	3940		30	2.13	> 10000	30	0.19	27	0.164	1078	1.1	10	18	63	< 5	0.05	20	< 10	128	40
TM-13	3950	3962	30	1.2	9350	26	0.12	13	0.168	752	0.7	5	8.7	37	< 5	0.01	< 10	< 10	73	10
TM-13	3962	3972	30	0.6	2505	158	0.08	15	0.148	1560	1.73	5	4.3	12	< 5	< 0.01	< 10	< 10	42	30
TM-13	3972	3979	10	0.62	4295	130	0.06	10	0.124	49800	6.66	985	3	14	< 5	< 0.01	< 10	< 10	44	410
TM-13	3979	3990	30	3.13	> 10000	540	0.25	41	0.191	1520	1.32	10	10.3	70	< 5	< 0.01	20	< 10	136	50
TM-13	3990	4000	30	4.15	> 10000	24	0.27	53	0.206	578	1.39	5	9.9	65	< 5	< 0.01	20	< 10	122	50
TM-13	4000	4009	30	2.69	> 10000	22	0.47	20	0.038	158	0.79	< 5	8	160	< 5	0.03	30	< 10	93	30
TM-13	4009		30	3.32	> 10000	296	0.22	55	0.23	984	1.91	5	9.1	55	< 5	< 0.01	20	< 10	127	40
TM-13	4019		20	0.27	1590	12	0.34	8	0.107	234	0.26	< 5	0.7	90	< 5	< 0.01	< 10	< 10	20	10
TM-13	4030	4040	10	0.09	1610	16	0.49	2	0.036	160	0.17	< 5	0.6	128	< 5	< 0.01	< 10	< 10	13	< 10
					0.55		0.0-		0.05.1					-						
TCH-2A	4100	4109	40	0.11	950	78	0.05	2	0.024	46	1.3	< 5	0.5	6	10	< 0.01	< 10	< 10	2	< 10
TCH-2A	4109	4120	40	0.06	3625	10	0.04	1	0.023	128	2.12	5	0.6	6	10	< 0.01	< 10	< 10	2	< 10
TOULDA	4400	4170	50	0.00	2670		0.04	2	0.007	00	4.05	. 5	0.7	-	10	0.04	. 10	. 10		. 10
TCH-2A TCH-2A	4160 4170	_	50 60	0.09	2670	< 2	0.04	2	0.037	80 64	1.25 1.08	< 5 < 5	0.7	5 6	10 10	< 0.01 < 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10
TCH-2A	4170		60 60	0.09	2930	< 2	0.05	2	0.04	64 110	1.08	< 5	0.6	6	10	< 0.01	< 10	< 10	1	< 10
ICH-ZA	4180	4190	00	0.12	2930	< 2	0.05	2	0.038	110	1.74	< 0	0.9	1	10	< 0.01	< 10	< 10		< 10
TCH-2A	4356	4365	30	0.87	7480	20	0.2	3	0.019	88	0.94	< 5	2.1	25	< 5	0.05	< 10	< 10	16	30
TCH-2A	4365		20	1.11	5085	14	0.2	3	0.019	00 40	1.18	< 5	2.1	37	< 5	0.05	< 10	< 10	18	20
TCH-2A	4305		20	1.75	5610	20	0.22	5	0.028	40	1.18	< 5	0.7	40	< 5	0.09	< 10	< 10	6	40
TCH-2A	4373		20	1.75	6950	86	0.16	6	0.033	34	0.59	< 5	3.4	28	< 5	0.04	< 10	< 10	23	10
TCH-ZA	4303	4090	20	1.47	0990	00	0.20	0	0.033	34	0.59	< 0	3.4	20	< 3	0.11	< 10	< 10	23	10

Appendix 2b - TCH-2 Analyses

Analyte	Au	Ag	Aq	AI	As	Ba	Be	Bi	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Cu	Fe	Ga
Units	ppb	ppm	a/Mt	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
Limit	5	0.1	3	0.01	0.5	1	1	1	1	0.01	0.1	1	0.1	1	0.1	0.1	0.01	0.01	1
Package Code	FA-01	TE-5	FA-04	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5	TE-5
SAMPLE ID																			
TCH-2 4030-4037	151	42.7	42.7	4.81	81.8	813	< 1	50		0.12	24	84	89.5	263	5.4	>10000	1.25	13.4	13
TCH-2 4037-4046	32	3.6	3.6	6.81	12.4	1200	2	8		0.25	2	57	11.3	291	7.7	533		2.85	16
TCH-2 4046-4050	277	45.2	45.2	4.22	62.9	749	1	139		0.12	5.1	209	65.8	275	9.4	> 10000	1.5	13.4	14
TCH-2 4653-4656B	57	> 100	633	0.64	4.3	5	< 1	> 1000	1317	5.56	669	7	137	215	0.8	> 10000	1.56	3.31	4
TCH-2 4656-4662B	43	> 100	450	0.64	10.7	15	< 1	> 1000	1049	8.25	418	8	91.6	308	1.5	> 10000	1.26	4.75	3
TCH-2 4662-4666B	92	> 100	898	0.24	< 0.5	2	< 1	> 1000	2186	3.21	920	11	157	202	0.5	> 10000	3.53	3.73	2
TCH-2 4666-4670B	47	> 100	280	0.44	1.6	3	< 1	645		8.15	439	10	77.8	299	0.8	9910		2.5	3
TCH-2 4670-4679B	17	> 100	304	0.31	5.7	5	< 1	620		8.83	363	12	63	253	1.5	> 10000	1.65	5.21	3
TCH-2 4679-4683	< 5	18.2	18.2	0.23	1	9	< 1	36		30	34.1	8	7.4	71	1.4	440		0.59	< 1
TCH-2 4683-4687B	19	> 100	349	0.19	1.1	6	< 1	> 1000	675	7.19	182	6	33	279	2.5	5610		4.32	2
TCH-2 4687-4690B	29	> 100	369	0.28	11.3	5	< 1	> 1000	804	5.46	875	19	105	152	1.6	> 10000	2.23	4.6	2
TCH-2 4690-4692	13	> 100	115	0.19	2.9	7	< 1	316		18.7	249	9	50.4	114	1	239		1.41	1
TCH-2 4692-4696B	17	> 100	233	0.31	< 0.5	3	< 1	616		5.01	753	7	88.8	174	0.8	> 10000	2.57	3.26	2
TCH-2 4696-4702B	34	> 100	530	1.05	13.7	4	< 1	> 1000	1138	11.1	446	6	88	176	1	3030		3.7	4
TCH-2 4702-4710B	< 5	37.4	37.4	0.89	12.1	11	< 1	86		25.3	45.6	11	10	160	0.5	532		1.21	2
TCH-2 4767-4771B	146	> 100	874	1.06	21.9	26	< 1	> 1000	1849	7.9	558	20	114	264	4.4	1690		3.73	4
TCH-2 4771-4783B	85	> 100	244	1.01	50.4	5	< 1	728		11.4	422	10	101	198	1	1940		6.7	5
TCH-2 4783-4785.6	< 5	14.1	14.1	0.66	12.6	25	< 1	32		31.5	18	18	4.7	112	1.1	68.1		0.63	2
TCH-2 4785.6-4791B	67	> 100	411	0.47	13.8	3	< 1	> 1000	1242	8.11	982	11	182	192	0.8	3890		3.31	2
TCH-2 4791-4800B	37	> 100	186	0.72	37.9	3	< 1	> 1000	1066	11	766	10	172	213	0.8	788		5.77	4
TCH-2 4800-4804B	< 5	28.9	28.9	1.94	52.4	2	< 1	81		18.9	24.9	13	11.8	154	0.7	353		10.7	13
TCH-2 4804-4812B	76	> 100	470	1	13.9	3	< 1	> 1000	1282	11	593	8	127	204	0.8	2290		4.97	5
TCH-2 4812-4822B	80	> 100	208	0.84	17.1	3	< 1	812		10.7	525	8	115	213	0.9	1370		4.83	4
TCH-2 4822-4828B	54	> 100	170	0.54	12.4	2	< 1	> 1000	1548	6.41	831	25	182	293	0.6	1200		3.27	3
TCH-2 4828-4837B	66	> 100	217	0.39	17.6	2	< 1	> 1000	2303	5.95	674	5	141	359	0.4	1150		3.1	2
TCH-2 4837-4849	5	7.9	7.9	0.41	3.8	7	< 1	28		32.5	23.4	11	5.2	39	0.3	38.2		0.63	1
TCH-2 4849-4854B	81	> 100	182	1.49	20.4	3	< 1	659		13.6	385	10	93.5	221	1.5	939		4.98	6
TCH-2 4854-4860B	111	> 100	178	1	21.4	3	< 1	452		11.7	478	9	124	278	0.8	732		5.37	4
TCH-2 4860-4862B	69	> 100	195	1.27	9.1	4	< 1	485		17.4	193	8	44.5	194	1.5	273		2.25	4
TCH-2 4862-4869B	137	> 100	328	1.76	30	3	< 1	852		12.6	495	8	105	182	1.6	1140		5.57	7
TCH-2 4869-4877B	100	> 100	207	1.21	32.2	3	< 1	483		13.2	567	17	131	184	1.3	3710		4.83	5
TCH-2 4877-4882	< 5	11.4	11.4	0.94	14.7	9	< 1	26		25.2	26.1	14	6.3	46	0.5	47.2		1.59	3
TCH-2 4882-4891B	187	> 100	613	0.72	15.2	4	< 1	> 1000	1443	9.9	927	5	197	135	0.6	> 10000	1.36	5.64	3
TCH-2 4891-4899	18	33.8	33.8	2.76	50	3	1	92		19.7	24.9	8	17.8	119	1.9	189		9.31	10
TCH-2 4899-4913	7	12.4	12.4	1.77	36.6	3	3	29		22.1	9.5	7	11.2	100	1	131		8.97	8
TCH-2 4913-4921	56	93.5	93.5	1.89	38.8	3	1	224		19	145	6	40.6	166	0.8	579		10.7	8
TCH-2 4921-4929	7	12.3	12.3	2.69	33.4	3	< 1	27		20.9	9.9	6	9	157	0.7	156		13.8	13
TCH-2 4929-4939	< 5	2.9	2.9	3.4	5.1	28	2	6		18.3	2.5	19	8.3	97	0.8	16.7		2.55	9
TCH-2 4939-4949	< 5	4.7	4.7	3.44	7.1	103	2	10		16.7	6.1	24	11	87	1.1	20.5		2.69	10

Appendix 2b - TCH-2 Analyses

Analvte	Ge	Hf	In	К	La	Li	Mg	Mn	Mn	Мо	Na	Nb	Ni	Р	Pb	Pb	Rb	Re	S
Units	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	%		%	ppm	ppb	%
Limit	0.1	0.1	0.01	0.01	1	0.1	0.01	1	0.01	0.1	0.01	0.1	0.1	0.001	0.1	0.01	0.1	5	0.05
Package Code	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5	TE-5	TE-5
SAMPLE ID					-		-										-		
TCH-2 4030-4037	1	1.1	2.19	5.3	47	34.4	0.28	> 10000	1.23	57.8	0.24	8.9	13.5	0.032	1390		331	24	17.5
TCH-2 4037-4046	1	1.4	0.11	6.94	31	23.7	0.3	4150		18.3	0.32	7.9	14.4	0.079	280		511	13	3.62
TCH-2 4046-4050	0.7	1.4	1.62	4.24	129	17.9	0.24	2800		54.4	0.18	13	15.1	0.044	804		318	21	18
TCH-2 4653-4656B	0.5	1.1	7.49	0.02	4	39.4	0.28	8010		3.9	0.06	1.5	12	0.022	> 10000	6.3	1.9	26	9.12
TCH-2 4656-4662B	4.6	0.5	5.4	0.05	4	21.4	0.26	8350		4.2	0.07	1.1	8.7	0.012	> 10000	3.3	5.4	5	7.26
TCH-2 4662-4666B	0.2	0.4	9.42	< 0.01	5	14.5	0.12	5080		1.4	0.04	0.4	8.1	0.006	> 10000	8.86	0.6	< 5	11.7
TCH-2 4666-4670B	0.6	0.5	4.42	< 0.01	5	30.2	0.24	9380		1.8	0.04	0.8	8.2	0.009	> 10000	3.63	1.3	5	6
TCH-2 4670-4679B	2.8	0.3	3.52	< 0.01	4	18.2	0.18	> 10000	1.19	2	0.04	0.4	7.5	0.003	> 10000	5.22	1.1	8	5.89
TCH-2 4679-4683	< 0.1	0.2	0.14	0.03	5	6.1	0.22	8910		0.7	0.05	0.7	6.9	0.006	4060		6	26	0.5
TCH-2 4683-4687B	3.2	0.1	1.92	< 0.01	2	15.3	0.14	> 10000	1.08	1.6	0.04	0.3	6.3	< 0.001	> 10000	5.75	1.6	5	3.35
TCH-2 4687-4690B	4.9	0.2	8.18	< 0.01	8	9.1	0.17	5990		2.4	0.04	0.4	7.2	0.003	> 10000	8.39	1.3	11	10.5
TCH-2 4690-4692	0.8	0.2	2.48	< 0.01	5	12.8	0.16	> 10000	2.54	0.8	0.04	0.3	5.9	0.011	> 10000	1.18	1.1	35	3.17
TCH-2 4692-4696B	0.6	0.6	6.73	< 0.01	3	16.4	0.18	7570		2.1	0.05	0.6	7.6	0.018	> 10000	8.07	0.7	9	8.09
TCH-2 4696-4702B	4	2.9	5.46	< 0.01	3	33.6	0.53	> 10000	1.46	5.4	0.06	2.8	8.9	0.033	> 10000	3.26	1	17	5.85
TCH-2 4702-4710B	1.8	2.6	0.44	0.01	6	16.6	0.85	9980		2.3	0.06	2.3	9.5	0.037	5030		1	13	0.58
TCH-2 4767-4771B	1.6	2.8	6.51	0.25	9	26.3	0.32	10000		6.3	0.06	3.8	15.4	0.065	> 10000	5.24	33.4	21	8.78
TCH-2 4771-4783B	3.5	1	5.97	0.04	4	22.6	0.56	> 10000	1.23	5.9	0.15	1.7	12.9	0.019	9980		2.1	11	8.46
TCH-2 4783-4785.6	0.1	1.3	0.2	0.02	9	22	0.53	3060		1.2	0.09	1.4	9.8	0.021	743		1.1	< 5	0.24
TCH-2 4785.6-4791B	2.4	0.8	15.9	0.01	6	17.4	0.22	9590		2	0.06	1	8.4	0.01	> 10000	1.64	1	< 5	10
TCH-2 4791-4800B	6.1	0.6	14.5	0.01	4	11.1	0.25	9250		2.9	0.07	1.2	9.5	0.008	4360		0.9	5	8.47
TCH-2 4800-4804B	13.1	2.1	1.65	0.02	3	8	0.34	> 10000	1.2	2.1	0.08	3	9.4	0.017	850		1.2	6	0.35
TCH-2 4804-4812B	3.4	1.1	11	0.03	3	28.7	0.52	> 10000	1.12	4.6	0.08	1.9	9.1	0.014	> 10000	1.69	1.9	17	8.44
TCH-2 4812-4822B	3.8	1.1	9.53	0.02	3	26.4	0.62	9990		6.1	0.08	1.7	8.5	0.024	6660		1.4	12	7.05
TCH-2 4822-4828B	3.7	0.7	17.7	< 0.01	11	16.7	0.26	6930		2.5	0.06	0.8	8.3	0.014	4720		0.7	< 5	8
TCH-2 4828-4837B	4.1	0.3	12	< 0.01	2	18	0.16	7130		2.1	0.06	0.6	7.8	0.006	5780		0.5	< 5	7.23
TCH-2 4837-4849	< 0.1	0.6	0.12	0.01	6	8.2	0.49	> 10000	1.05	0.4	0.06	0.8	7.4	0.019	1850		0.7	< 5	0.25
TCH-2 4849-4854B	4.5	1.7	6.62	0.03	4	28.1	1.02	> 10000	1.45	3.2	0.11	2.3	12	0.037	6110		2.9	6	5.87
TCH-2 4854-4860B	3.1	0.9	10.9	0.03	4	31.8	0.6	> 10000	1.24	2.4	0.12	1.3	10.6	0.021	5730		1.3	< 5	7.51
TCH-2 4860-4862B	2.7	2.3	2.94	0.02	4	42.6	1.04	> 10000	2.25	0.9	0.12	2.5	9.2	0.049	7440		1.5	7	2.96
TCH-2 4862-4869B	3	2	8.16	0.04	3	28.9	1.54	> 10000	1.65	3.5	0.14	3.5	12.6	0.046	9320		3.5	16	6.63
TCH-2 4869-4877B	2.4	2.3	9.23	0.02	8	24	1.01	> 10000	1.73	4	0.1	3.7	14.8	0.053	5430		2.5	19	8.61
TCH-2 4877-4882	1.3	2.8	0.26	0.01	7	21.9	1.01	> 10000	2.21	1	0.08	2.7	8.1	0.034	1800		0.7	< 5	0.18
TCH-2 4882-4891B	2.4	0.4	18.9	0.03	2	21	0.48	> 10000	1.12	1.3	0.06	1	15.8	0.012	> 10000	1.77	1.6	8	13.2
TCH-2 4891-4899	11.1	3.1	0.99	0.03	3	30.5	1.4	> 10000	1.99	23.8	0.09	5.4	14.9	0.059	816		4.2	28	1.27
TCH-2 4899-4913	8.3	2.4	0.73	0.02	2	11.6	2.44	> 10000	1.28	24	0.07	3.9	20.8	0.04	414		1.6	20	0.49
TCH-2 4913-4921	13.3	1.8	3.5	0.03	2	20.3	0.81	> 10000	1.37	3.8	0.1	3.3	14.9	0.051	2550		1.4	6	2.52
TCH-2 4921-4929	8.7	3.3	0.84	0.03	2	10.1	0.84	> 10000	0.92	13.2	0.09	5.7	13.9	0.053	389		1.3	13	0.69
TCH-2 4929-4939	3	2.2	0.23	0.16	9	30	5.96	> 10000	0.87	79.4	0.16	9.3	25.5	0.035	118		7.2	106	0.22
TCH-2 4939-4949	3.3	2.2	0.44	0.47	11	40.4	6.41	> 10000	1.03	61.6	0.19	10	25.1	0.039	202		23.7	82	0.42

Appendix 2b - TCH-2 Analyses

Analyte	Sb	Sc	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Y	Zn	Zn	Zr
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
Limit	0.1	0.1	0.1	1	0.1	0.1	0.1	0.005	0.1	0.1	2	0.1	0.1	1	0.01	0.1
Package Code	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5
SAMPLE ID																
TCH-2 4030-4037	26.5	7.3	11.3	87	0.7	6.2	9.9	0.139	4.9	2.7	16	13.5	8	5850		46
TCH-2 4037-4046	5.5	6.7	8.4	137	0.7	1	14.7	0.228	7.9	4.7	43	18.5	9.6	645		40.8
TCH-2 4046-4050	18.6	9.2	7.6	68	1	23.1	13.7	0.205	3.8	4.6	22	27.3	11.5	1410		50.8
TCH-2 4653-4656B	7.5	2.1	6.6	19	< 0.1	85.7	1	0.054	1.5	2.5	32	72.7	9.9	> 10000	16.26	41.2
TCH-2 4656-4662B	5.8	1.1	6	20	< 0.1	52.8	0.8	0.029	1.4	1.3	9	168	7	> 10000	11.33	18.7
TCH-2 4662-4666B	4.4	0.7	5.7	10	< 0.1	127	0.5	0.017	2.1	1	8	55.8	5.2	> 10000	22.86	12
TCH-2 4666-4670B	8.1	1.9	5.4	23	< 0.1	33.6	0.6	0.026	0.8	1.7	6	42.1	12.9	> 10000	11.32	16.3
TCH-2 4670-4679B	7.8	1.1	5.4	22	< 0.1	37.3	0.7	0.016	0.8	1.5	13	179	12.3	> 10000	9.75	9.5
TCH-2 4679-4683	1.6	0.7	4.5	138	< 0.1	2.3	0.2	0.017	0.1	1.8	20	13.3	4.8	7880		8.6
TCH-2 4683-4687B	9.7	0.6	4.6	22	< 0.1	39.5	0.5	0.008	0.8	1.5	< 2	161	7.3	> 10000	4.69	4
TCH-2 4687-4690B	4.6	0.6	4.5	13	< 0.1	46.3	0.5	0.015	1.5	2.1	12	58.1	4.8	> 10000	23.25	6.7
TCH-2 4690-4692	4.1	1	3.9	82	< 0.1	14.5	0.2	0.01	0.4	2.8	23	55.9	7.6	> 10000	6.78	6.6
TCH-2 4692-4696B	4.4	0.9	4.6	12	< 0.1	30	0.6	0.024	0.7	2.1	12	69.3	10.2	> 10000	19.96	22.1
TCH-2 4696-4702B	4.9	1.8	5.3	32	0.2	57.2	2.2	0.105	1.1	5.2	39	80.7	8.8	> 10000	12.28	106
TCH-2 4702-4710B	3.3	1.6	4.6	113	< 0.1	4.7	1.4	0.086	0.1	5.7	43	15.6	7.9	> 10000	1.25	102
TCH-2 4767-4771B	3.4	2.5	5.7	25	0.2	82	3.7	0.128	3.4	6.6	19	19	10	> 10000	14.75	103
TCH-2 4771-4783B	4.1	2.5	5.3	34	0.1	29.5	1.4	0.051	0.7	3.7	24	72.9	13.5	> 10000	11.3	38.8
TCH-2 4783-4785.6	5.1	1.8	7.1	140	< 0.1	1.2	0.6	0.055	0.1	6.7	31	3.3	10.1	4070		55.5
TCH-2 4785.6-4791B	4	0.9	5.2	22	< 0.1	50.6	0.9	0.035	1	3.5	13	61.9	5.7	> 10000	25.42	34.4
TCH-2 4791-4800B	3.5	1.5	5.5	16	< 0.1	37.8	1.3	0.043	0.3	3.3	31	100	5.5	> 10000	20.91	21.1
TCH-2 4800-4804B	1.9	2.2	6.5	15	0.2	3.3	2	0.095	< 0.1	4.4	80	241	10.6	5860		81.2
TCH-2 4804-4812B	4.7	1.6	5.6	33	0.1	56.8	1.2	0.062	1.1	3.3	29	53.5	9.4	> 10000	16.06	42.9
TCH-2 4812-4822B	5.1	1.7	4.9	31	0.1	34.2	1.2	0.058	0.5	3.2	22	62.6	11.7	> 10000	14.21	42.3
TCH-2 4822-4828B	5.2	0.9	5	15	< 0.1	51.2	0.7	0.033	0.3	3.1	< 2	42.2	7.2	> 10000	22.75	23.4
TCH-2 4828-4837B	10.4	0.8	4.7	12	< 0.1	63.7	0.6	0.02	0.4	1.4	< 2	30.8	4.3	> 10000	18.61	11.6
TCH-2 4837-4849	2.5	1	4.4	137	< 0.1	1.7	0.4	0.034	< 0.1	5	43	2.3	5.9	5520		22.8
TCH-2 4849-4854B	4.1	2.3	4.8	44	0.2	19.3	2.3	0.087	0.5	3.5	48	93.2	9	> 10000	10.78	62.6
TCH-2 4854-4860B	4.3	1.3	4.6	38	< 0.1	17.2	1.4	0.045	0.5	2.2	25	61.1	6.9	> 10000	13.55	32.8
TCH-2 4860-4862B	4.7	2.1	3.8	70	0.1	16.4	1.6	0.103	0.6	5.1	52	24.8	7.8	> 10000	5.29	90.9
TCH-2 4862-4869B	3.1	2.8	4.3	48	0.2	32.4	2.7	0.119	0.8	3.4	50	61	9.1	> 10000	13.35	76.8
TCH-2 4869-4877B	2.8	2.7	3.7	56	0.2	19	2.5	0.128	0.5	4.5	38	41.9	10.7	> 10000	15.14	87
TCH-2 4877-4882	4.4	1.8	2.5	101	< 0.1	1.1	1.6	0.09	< 0.1	3.6	31	37.9	7.4	5880		108
TCH-2 4882-4891B	3	1.2	6.1	37	< 0.1	66.1	1.1	0.034	1.3	1.6	25	49.4	6	> 10000	23.96	19.4
TCH-2 4891-4899	2.4	5.4	5.1	51	0.3	3.9	6.6	0.225	0.2	6	82	42.1	27.5	6740		113
TCH-2 4899-4913	2.6	3.6	4.7	36	0.2	1.5	2.7	0.15	< 0.1	2.8	51	78	17	2700		92.4
TCH-2 4913-4921	2.3	3.3	4	36	0.2	9.6	1.7	0.11	0.5	3.2	42	111	19	> 10000	3.93	69.4
TCH-2 4921-4929	1.6	3.4	4.5	15	0.3	1.2	2.3	0.175	< 0.1	2.5	56	69.1	17.9	2860		139
TCH-2 4929-4939	4.5	7.5	2.9	34	0.6	0.4	4.8	0.351	0.2	4.3	58	4.5	16.1	841		64.6
TCH-2 4939-4949	5	7.7	3.1	58	0.7	0.4	6.4	0.377	0.3	6.2	59	5.5	18.1	1860		62

Appendix 2c - TCH-2 Analyses (cont'd)

Analyte	Au	Ag	Ag	AI	As	Ва	Be	Bi	Bi	Ca	Cd	Ce	Co	-	Cs		Cu	Fe		Ge
Units	ppb	g/Mt	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	%		ppn
Limit	5	3	0.1	0.01	0.5	1	1	0.1	1	0.01	0.1	1	0.1	1	0.1	0.1	0.01	0.01		0.1
Package Code	FA-01	FA-04	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	SEA	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5	TE-5	TE-{
SAMPLE ID							-								=					
TCH-2 4109-4116	22		16.2	2.72	17.3	24	9	89.6		3.37	4.6	64	15		107			9.18	15	1.6
TCH-2 4116-4127	10		14.0	3.66	13.7	336	6	106		0.98	2.8	68	13		60.3	391		3.14	11	0.9
TCH-2 4127-4136	8		30.6	1.36 2.35	11.2	37 21	5	74.7		6.8	3.9	12	51.2	333	19.4	9260		9.22	13	1.4
TCH-2 4136-4146 TCH-2 4146-4156	13 26		6.8 34.2	2.35	23.5 23	15	6 5	13.4 62.3		5.93 8.78	1.4 5.4	13 11	20.5 13.5	308 301	61 39.7	1680 9230		14.3 12.4	22 21	2.8
TCH-2 4146-4156	20		83.5	1.64	32.6	18	6	326		6.85	8.5	12	13.5	252	35.5	7340		12.4	21	2.9
TCH-2 4166-4175	25		11.2	1.04	29.7	14	5	41.2		11.2	1.5	12	4.3		11.1	457		14.2	15	3.5
TCH-2 4175-4185	11		43.7	1.52	22.7	14	5	317		9.53	1.4	15	5.5		7.7			16.1	21	4.2
TCH-2 4185-4195	16		66.1	1.24	22.7	11	3	514		17.1	1.4	19	6.2	88	6.7			11.6		2.9
TCH-2 4195-4201	34		142.0	1.9	35.8	11	2	> 1000	1813	16.2	2.6	21	11.9		23.1	4820		12.1	15	1.8
TCH-2 4201-4205	5	358	> 150	1.04	17.3	14	1	> 1000	4835	14.8	9.3	9	28.1	80	6.9		6.65	13.7	10	1.2
TCH-2 4205-4209	59	180	> 150	1.07	36.5	16	2	> 1000	1875	16.3	4.3	17	20		7.6	8110	0.00	12.6		1.6
TCH-2 4209-4215	11		69.0	2.42	11	113	2	163		13.3	135	24	25.6		28.8	1320		4.06	9	1.1
TCH-2 4215-4225	< 5		2.1	1.85	6.9	403	< 1	9.7		15.2	1.7	9	1		12.9	52.1		0.62		< 0.1
TCH-2 4225-4233	< 5		0.7	1.85	11.6	250	1	1.7		17.3	1.2	12	3.2		9.2	25.8		0.97	4	0.2
TCH-2 4233-4243	< 5		0.5	1.76	6.8	264	1	2		15.6	1.5	9	2		13.8	16.8		0.82	3	0.4
TCH-2 4243-4249	< 5		19.0	4.78	13.8	556	2	41.4		7.95	24.9	38	6.8		47.5	477		2.7	13	0.8
TCH-2 4249-4260	21		140.0	1.56	26.3	20	3	698		15	10	33	6.9		9.8	391		14.2	15	3.5
TCH-2 4260-4270	8	-	66.7	2.72	23.2	59	2	135		15.5	100	24	24.3	247	23.7	505		4.25	10	2.3
TCH-2 4270-4280	< 5		92.3	1.44	75.4	8	1	199		15.7	55.4	13	15.5	340	10.4	1190		9.96	9	6.3
TCH-2 4280-4286	< 5		11.9	2.96	14.6	21	3	23.9		14.9	36.5	38	10.1	151	33.9	200		4.45		1.7
TCH-2 4286-4290B	11		42.1	3.09	8.1	11	1	67.2		12.3	258	11	56.2	518	36.9	1980		4.32	10	1.3
TCH-2 4290-4296	13		36.7	3.11	7.8	18	2	35.4		10.4	226	27	54.2	316	35.4	2850		2.38		8.0
TCH-2 4296-4300	16		19.1	3.5	22.4	29	3	42.5		10.3	9.4	16	16.9	120	78.9	1150		13.4	18	2.6
TCH-2 4300-4302	11		117.0	3.01	15.4	13	2	177		6.35	478	8	99.2	233	40.3	> 10000	1.58	4.09	11	0.9
TCH-2 4302-4312B	5		51.8	2.21	12.9	24	1	68.5		5.5	236	54	57.1	625	19.1	9520		3.33	7	1.2
TCH-2 4312-4320	< 5		2.2	3.19	10.3 24.8	531	< 1	3.1 17.7		3.9	6.1	16 22	4.9	428 375	17.3	194 239		0.84	7	< 0.1
TCH-2 4320-4330 TCH-2 4330-4340	6 < 5		9.5 1.3	2.85 2.3	47.3	420 229	< 1	2.7		14.5 23.9	38.4 1.2	18	12.3 1.7		20.4			0.77		0.2
TCH-2 4330-4340 TCH-2 4340-4350	< 5		0.5	2.3	47.3	229	< 1	0.5		23.9	0.9	10	0.8		21.9			0.77	5	< 0.
TCH-2 4390-4400	< 5		0.3	2.01	8.2	410	< 1	1.2		3.31	0.8	16	1.7		8.5			0.40	5	0.6
TCH-2 4440-4450	< 5		0.4	1.68	6.1	350	< 1	1.5		14.3	3.2	10	3.6	189	8.9			0.87	3	0.2
TCH-2 4450-4460B	12		139.0	1.21	18.2	12	4	531		16.1	27.4	20	9.9		6.9			12.5		3.1
TCH-2 4460-4470	10		105.0	0.84	30.8	10	2	236		15.3	125	9	33.5		4	2490		6.45	6	3.5
TCH-2 4460-4470B	7		103.0	0.9	56.3	10	2	234		15.9	124	10	35		4.2			6.9		1.8
TCH-2 4470-4480	< 5		40.3	1.73	16.5	12	2	88.1		15.8	23	17	6.3	167	5.7	74.8		3.16	6	3.6
TCH-2 4480-4490	9	178	> 150	1.01	41.2	6	1	457		17.3	22.4	10	9.9	90	2.8	384		8.75	8	Ę
TCH-2 4490-4500	< 5		36.1	1.57	18.2	12	1	81.1		22	8	10	6.3	126	27	216		10.1	11	1.5
TCH-2 4500-4510	< 5		16.1	1.68	22.1	8	1	34.5		19.8	15.4	8	6.7	101	19.4	325		10.6	11	1.8
TCH-2 4520-4532	< 5		42.8	1.14	41.5	14	1	101		23.2	19.8	11	6.2	-	1.7			2.19		0.9
TCH-2 4540-4550	< 5		1.3	0.4	7.3	9	< 1	1.2		24.7	1.9	8	0.9		0.6			0.54	1	< 0.1
TCH-2 4640-4648	< 5		0.9	1.74	30.8	16	< 1	1.3		27.5	1.3	18	3.5		0.9			1.05		0.1
TCH-2 4959-4970	< 5		0.5	2.18	18.5	42	2	0.8		15.9	1.2	24	5.1	106	3.8			1.34	7	1.3
TCH-2 4970-4982	< 5		0.5	2	30.8	7	1	0.9		18.3	2.6	40	3.9		1.6			1.07	5	0.0
TCH-2 4982-4991	< 5 21		11.5	1.84	21.7	84	< 1	22.9		17.8	19.4	23	6.6	94 130	3.1			1.12	5	3.0
TCH-2 4991-5001 TCH-2 5001-5010	21		7.3	2.95 2.32	12.6 20.2	168 174	3	14.4 3.1		15.8 17.6	16.2 5.8	32 25	14.2 5.6		7.2	114 35.5		2.77	8 5	3.4
TCH-2 5010-5020	< 5		1.9	1.21	20.2	8	< 1	2.6		29.1	3.8	15	2.5		4.1	30.4		0.88	3	< 0.1
TCH-2 5020-5030	< 5		0.7	0.39	8.3	28	< 1	0.5		36.1	0.9	9	2.5		1	14.1		0.88		< 0.1
TCH-2 5030-5040	< 5		0.5	0.33	28.7	7	1	0.6		31.9	2.3	13	4.2	59	0.6			0.76	2	0.3
TCH-2 5040-5050	< 5		0.4	2.45	14.2	422	1	0.4		22.5	1	22	4.2		2.6			1.01	5	0.3
TCH-2 5091-5100	< 5		0.4	4.81	13.4	915	. 1	0.5		5.44	0.5	52	12.2	489	12.4	29.2		1.96	11	< 0.1
TCH-2 5148-5150	< 5		12.6	1.58	44.6	14	< 1	25.7		19.9	25.8	22	10		1.8	-		1.52	5	0.2
TCH-2 5179-5185	< 5		1.6	4.16	37.8	10	1	1.4		21.2	2.8	41	11.3		1.4			2.53	11	0.3
TCH-2 5185-5190	< 5		3.0	3.46	43.7	16	1	3.1		20	4.8	50	8.3		1.6			1.69		0.2
TCH-2 5190-5200	< 5		0.7	0.49	57.8	18	< 1	0.2		26.1	1.4	6	1.5	55	0.7			0.54	1	< 0.1
TCH-2 5216-5217	10		64.0	3.61	17.5	54	1	117		20.6	66.3	28	26.3	372	1.8			3.07	10	0.0
TCH-2 5217-5227	< 5		1.6	1.94	29.3	32	< 1	1.2		31.1	1.3	22	3.5	156	2.2	25.1		1.11	5	< 0.1
TCH-2 5227-5239	< 5		1.7	1.16	31.1	13	< 1	1.5		29.8	1.7	13	2.5		1.2	14.5		1.03	3	< 0.1
TCH-2 5239-5251	< 5		3.8	3.77	35.6	58	1	10.2		16.9	6.5	34	6.5	212	23.2	32.6		1.67	10	ę
TCH-2 5290-5300	< 5		0.7	4.28	< 0.5	781	2	0.3		4.37	0.1	43	7.7	215	25.3	10		1.8	10	1.5

Appendix 2c - TCH-2 Analyses (cont'd)

Analyte	Hf	In	К	La	Li	Mg	Mn	Mn	Мо	Na	Nb	Ni	Р	Pb	Pb	Rb	Re	S	Sb	Sc
Units	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppb	%	ppm	ppm
Limit	0.1	0.01	0.01	1	0.1	0.01	1	0.01	0.1	0.01	0.1	0.1	0.001	0.1	0.01	0.1	5	0.05	0.1	0.1
Package Code SAMPLE ID	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5	TE-5	TE-5	TE-5	TE-5
TCH-2 4109-4116	4.4	2.34	0.51	29	126	1.61	> 10000	4.84	23.6	0.08	10.6	32.9	0.128	811		137	56	1.98	17	7.9
TCH-2 4116-4127		0.67	2.31	34	120	0.91	> 10000	2.41	20.8	0.09	10.0	27.9	0.120	632		243	89	1.30	9.1	7.8
TCH-2 4127-4136	2		0.26	5	78.1	0.45	9800	2	36.7	0.07	2.3	43.3	0.051	1330		41.6	26	2.87	23.9	2.8
TCH-2 4136-4146	2.3	3.66	0.43	4	88.7	0.64	> 10000	2.68	52.4	0.07	3.1	26.3	0.071	292		108	44	2.1	22.9	3.8
TCH-2 4146-4156	1.7	3.77	0.25	3	81.6	0.53	> 10000	1.13	291.0	0.06	2.7	35	0.049	1690		61.4	101	2.84	23.1	2.1
TCH-2 4156-4166	0.9	4.49	0.27	3	73.6	0.51	> 10000	1.44	65.4	0.06	1.8	27.3	0.013	4060		65.7	45	3.86	30.2	1.8
TCH-2 4166-4175	1.2	3.73	0.05	3	73.3	0.53	7960		15.7	0.06	1.3	11.1	0.015	559		10.2	14	0.47	33.2	1.6
TCH-2 4175-4185	1	7.25	0.04	4	80.3	0.45	7200		9.9	0.06	1.9	15	0.018	1060		5.8	12	0.98	28.5	2.2
TCH-2 4185-4195	1.7	3.51	0.03	4	51.8	0.41	8890	4.40	51.7	0.06	1.9	12.9	0.023	2050		5.6	19	0.79	16.6	2
TCH-2 4195-4201 TCH-2 4201-4205	2.5 0.8	3.07 7.31	0.1	4	63.6 37.4	0.64	> 10000 9560	1.16	398.0 240.0	0.05	3.1 1.1	29.1 75.8	0.049	4590 8950		25.4 5.9	41 39	1.12 5.91	10 9.9	2.4
TCH-2 4205-4209	0.8	5.23	0.03	5	42.5	0.47	> 10000	1.06	713.0	0.05	1.1	42.3	0.011	6390		7.6	46	2.4	10.3	1.2
TCH-2 4209-4215	2.1	1.93	0.85	10	57.8	0.42	> 10000	1.00	36.6	0.06	5.7	14.3	0.032	> 10000	3.49	123	40	2.49	7.2	4
TCH-2 4215-4225	0.6	0.04	1.84	4	14.7	0.13	8120	0	8.8	0.07	2.7	6.2	0.037	344	0.10	141	17	< 0.05	1.5	2.2
TCH-2 4225-4233	1.4	0.03	1.14	7	33	2.39	8750		19.8	0.09	3	11.8	0.04	261		89.3	43	0.11	8.4	2.3
TCH-2 4233-4243	0.7	0.03	1.22	5	39.4	3.16	> 10000	1.08	16.6	0.08	2.6	10.3	0.042	310		98.8	40	< 0.05	2.7	2.2
TCH-2 4243-4249	3.2	0.44	2.88	16	66	0.67	9730		25.8	0.09	13.2	18.7	0.077	6730		261	63	0.48	3.9	8.9
TCH-2 4249-4260	1.6	3.5	0.05	8	57.6	0.55	> 10000	1.33	470.0	0.05	2.5	11.7	0.063	4790		8.9	346	0.59	23.5	2.5
TCH-2 4260-4270	2.8	1.16	0.71	10	44.1	0.59	> 10000	1.72	25.0	0.06	8	17.3	0.04	> 10000	3.23	110	45	1.99	4.7	6.1
TCH-2 4270-4280	1.3	2.59	0.19	4	22.2	0.32	> 10000	1.13	18.8	0.05	3.5	10.5	0.038	> 10000	2.18	33.2	37	1.86	4.1	3
TCH-2 4280-4286 TCH-2 4286-4290B	2.8 1.8	1.08 2.07	0.62	16 4	55.1 35	0.63	> 10000 > 10000	2.74 1.31	85.5 129.0	0.05	9.2 8.7	15.5 15.6	0.049 0.041	6170 > 10000	3.88	113 80.5	127 166	0.51 4.46	7.5 5.2	6.2 6.9
TCH-2 4280-4290B	1.8	2.07	0.41	4	35 44.2	0.41	> 10000	1.31	129.0	0.05	9.7	15.6	0.041	> 10000	3.88 4.97	80.5	60	3.73	5.2 6	6.9
TCH-2 4290-4290	4.3	3.29	0.68	6	88.2	0.58	> 10000	1.36	715.0	0.05	9.7 7.1	20.5	0.041	3550	4.97	152	> 1000	1.26	18.1	5.3
TCH-2 4300-4302	2.7	5.34	0.76	3	42.8	0.49	8850	1.00	194.0	0.06	5.8	15.4	0.036	> 10000	7.85	156	138	8.25	5.3	4.9
TCH-2 4302-4312B	1.8	2.03	0.43	28	50.4	0.5	> 10000	1.13	15.3	0.05	7	17.4	0.064	> 10000	3.7	69.9	27	4.46	12.1	5.5
TCH-2 4312-4320	0.9	0.05	3.27	8	16.9	0.17	2920		7.5	0.11	5.9	12.9	0.045	1020		211	13	0.16	1.4	5.3
TCH-2 4320-4330	1.9	0.38	2.31	13	19.7	0.34	3900		10.8	0.09	5.7	16.1	0.124	4060		191	52	0.86	2.3	4.8
TCH-2 4330-4340	2.3	0.03	1.58	11	7.4	0.25	6970		7.7	0.08	5.1	12.5	0.165	221		161	48	0.08	1.6	4.1
TCH-2 4340-4350	0.7	0.01	1.9	6	8.5	0.1	5190		7.9	0.09	3.1	6	0.083	120		125	28	< 0.05	0.9	3
TCH-2 4390-4400	1		2.27	8	22.8	0.07	1740		17.7	0.09	3.5	9.4	0.048	183		153	33	< 0.05	2.4	2.2
TCH-2 4440-4450 TCH-2 4450-4460B	1.2 1.2	0.04	1.51 0.04	6 7	36.3 36.2	2.45 0.45	4730 > 10000	1.96	20.8 158.0	0.09	3 1.5	13.2 13.4	0.032	647 > 10000	1.4	98 6.4	61 58	0.7 0.98	2.9 20.1	2.6 2.7
TCH-2 4450-4460B	1.2	2.87	0.04	3	40.7	0.43	> 10000	1.90	3.5	0.05	1.5	9.9	0.028	> 10000	1.4	9.7	14	2.38	12.8	2.7
TCH-2 4460-4470B	1.4	2.07	0.06	4	42.8	0.30	> 10000	1.73	4.0	0.05	1.7	11	0.020	> 10000	1.75	10	17	2.52	12.0	2.1
TCH-2 4470-4480	2.5	0.6	0.13	8	61.4	2.47	> 10000	4.71	5.3	0.05	4.2	11.2	0.03	6170		23.1	22	0.48	13.9	4
TCH-2 4480-4490	1.1	2.27	0.03	2	24.5	0.86	> 10000	5.12	3.8	0.05	1.5	8.6	0.021	> 10000	2.25	4.5	< 5	1.1	7.4	1.6
TCH-2 4490-4500	1.5	1.08	0.12	3	25	0.56	> 10000	1.13	15.1	0.05	2.2	8.6	0.03	4770		35.3	24	0.49	6.8	2
TCH-2 4500-4510	2.4	1.19	0.09	2	19.5	0.47	> 10000	1.12	10.4	0.06	3.3	9.4	0.025	3400		27.2	17	0.51	6.4	2.6
TCH-2 4520-4532	2.6	0.14	0.03	6	49.4	5.58	8470		1.4	0.08	3	13.9	0.013	4470		1.9	14	1	3.9	3.1
TCH-2 4540-4550	2.2	0.02	0.04	4	1.5	8.67	418		1.4	0.1	1.3	5.3	0.015	100		1.1	7	0.13	4.5	1.8
TCH-2 4640-4648 TCH-2 4959-4970	2.8 2.3	0.02	0.04	9 12	57.7 54.8	1.79 9.06	2100 7570		5.3 4.1	0.07	4.5 6.6	17.5 20.3	0.052	228 65.6		3.1 20.2	24 28	0.21	4.8 5.3	4.3 5.8
TCH-2 4959-4970 TCH-2 4970-4982	2.3	0.11	0.18	27	54.8 63.7	9.06	4920		3.2	0.15	5.3	20.3	0.044	65.6 94		20.2	13	0.13	5.3 18	
TCH-2 4982-4991	2.7	0.03	0.39	11	58.2	7.06	6510		4.8	0.14	4.6	14.1	0.032	1610		27.3	13	0.17	5	
TCH-2 4991-5001	1.4	0.97	0.55	16	39.1	4.61	> 10000	1.32	7.1	0.07	6.9	18.9	0.044	970		49.5	18	0.57	6	5.3
TCH-2 5001-5010	3.2	0.05	0.64	11	36.2	6.82	6290		7.2	0.12	6.5	19.7	0.041	610		46.9	12	0.21	13.2	5.7
TCH-2 5010-5020	2.3	0.02	0.05	8	17.4	2.61	1980		8.9	0.05	3.3	13.5	0.028	854		4.8	18	0.12	4.8	3.1
TCH-2 5020-5030	0.4	0.01	0.07	6	25.6	0.88	419		2.0	0.06	0.8	9.7	0.009	91.6		5.8	8	0.21	1.3	1.3
TCH-2 5030-5040	1.7	0.03	0.02	7	29.9	1.37	5780		3.2	0.05	1.9	13.6	0.038	377		1.7	< 5	0.26	4.7	1.8
TCH-2 5040-5050	2.1	0.01	1.62	10	19.9	2.39	4030		12.1	0.12	6.6	24.3	0.055	135		91.9	42	0.19	4.7	6.7
TCH-2 5091-5100 TCH-2 5148-5150	1.3 5.2	0.02	4.15 0.1	25 12	65.7 53.9	2.14 7.67	1770 2450		25.8 1.5	0.58	12.7 3.6	39 16.2	0.053	103 6280		239 10	27	1.69 1.22	2.9 19	11.4 5.2
TCH-2 5148-5150 TCH-2 5179-5185	5.6	0.09	0.08	20	14.3	5.3	3940		5.2	0.12	9.5	35.9	0.015	707		6.9	31	1.22	19	10.8
TCH-2 5185-5190	5.1	0.03	0.05	20	35.9	6.05	3400		5.2	0.08	6.7	28.8	0.034	2350		4.2	28	0.9	12.7	8.8
TCH-2 5190-5200	0.8	< 0.01	0.04	3	4.6	8.98	421		0.8	0.09	1.4	9.5	0.025	104		1.8	15	0.3	1.7	2
TCH-2 5216-5217	4.5	0.18	0.08	16	12.2	3.88	8000		22.6	0.09	8.6	35.4	0.044	> 10000	1.61	7.1	9	1.31	9	8.1
TCH-2 5217-5227	2.5	0.02	0.09	11	15.4	2.61	2410		6.1	0.07	4.3	16.4	0.024	331		7.4	35	0.26	5.4	5.1
TCH-2 5227-5239	1.8	0.01	0.03	7	13.4	4.48	2290		1.9	0.07	2.7	13.3	0.013	1040		1.9	24	0.5	7.1	2.8
TCH-2 5239-5251	3.7	0.04	1.07	17	109	2.51	2180		7.1	0.07	9.2	24.8	0.043	2910		66.3	27	1.66	15.6	6.5
TCH-2 5290-5300	0.4	0.03	1.05	23	89.9	1.99	705		0.9	0.06	9.8	33.5	0.047	35.6		76.9	< 5	0.23	1.1	8.4

Appendix 2c - TCH-2 Analyses (cont'd)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analyte	Sn	Sr	Та	Те	Th	Ti	TI	U	v	w	Y	Zn	Zn	Zr
Prockage Code FE-5 TE-5	Units		ppm		ppm				ppm	ppm	ppm	ppm	ppm	%	
SAMPLE 0 - - - - </th <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th>1</th> <th></th> <th></th>			1							_			1		
Tork2 400+416 Tofe 9 76 6.9 76 0.9 102 6.90 380 0.7 47.3 1300 116 Tork2 41164/17 4.3 28 5.3 7.5 0.4 2.2 2.28 4.44 0.01 11.1 1150 76.7 Tork2 41164/166 6.7 19 3.1 2.2 2.21 0.01 0.66 1.4 1.6 0.0 11.1 1150 76.3 77.5 0.4 0.01 1.5 76.7 77.5 0.1 1.01 1.500 78.3 77.5 0.4 77.5 0.1 1.1 1.01 1.500 78.3 77.5 0.4 77.5 0.1 1.1 1.2 77.5 0.4 77.5 0.1 1.1 0.1 1.3 3.2 99.7 0.1 1.1 1.5 0.0 77.5 0.1 1.04 3.1 3.2 99.7 0.1 1.1 1.5 0.0 1.1 0.1 1.5 0.1		TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	MEA	TE-5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10.0			5.0		0.004	10.0	50.0			(7.0	1000		400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
CH-2 456-4166 8 9 5.4 1.5 < < 0.1 0.1 1.0 1.0 1.0 0.0 /ol>		-			-		-				-				
TCH-2 468-4175 4.6 Z2 0.7 1.1 c 0.1 0.236 3.7 34.3 589 c.0.1 1.2 777 6 44.9 TCH-2 4175-4165 4.2 36 6.6 1.0 10.3 3.1 34.2 60.0 777 0.1 1.2 776 44.9 TCH-2 4185-4105 4.4 34.1 60.1 0.18 4.4 34.1 60.1 7.8 3.3 2.80 0.1 7.8 3.3 2.80 0.1 7.8 3.3 2.80 0.1 7.8 3.3 2.80 0.1 7.8 3.3 2.80 0.1 7.8 3.3 2.8 0.1 7.8 3.3 2.8 0.1 7.8 3.3 2.8 0.1 7.8 3.3 2.8 0.1 7.8 3.2 5.8.4 1.4 0.1 3.8 7.8 3.3 2.2 5.8 1.4 1.4 0.1 1.8 1.1 1.2 1.7000 1.2 1.10															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
CH-2 4484-4495 4.2 36 5.6 1.1 <0.1 31 34.2 592 0.1 1.3 500 1038 TCH-2 4185-4404 36 44.8 34.1 440 100 0.2 12 613 133 TCH-2 4205-4205 4.4 38 46.8 0.0 0.01 0.21 3.5 2.59 422 0.01 1.4 2.4 41.4 180 0.3 1.9.8 0.3 1.9.8 0.0 0.21 1.4 2.4 4.1.4 180 0.3 1.9.8 0.1 0.7 7.9 1.8 0.1 0.7 7.9 1.8 0.1 0.7 7.9 1.8 0.1 0.7 7.9 1.9 0.0 1.9 2.8 0.1 0.66 3 1.3 0.0 1.9 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8<															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4185-4195														
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TCH-2 4195-4201	4.7	37	16.9	2	0.1	0.365	4.4	34.1	401	0.2	12	613		103
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4201-4205	4.4	36	45.8	0.8	< 0.1	0.197	2.5	33.4	288	0.1	7.8	1320		30.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4205-4209	4.6	38	19.6	0.9	< 0.1	0.213	3.5	25.9	452	< 0.1	10.4			42.1
TCH-2422+433 1.6 6.4 0.2 1.8 0.1 0.6666 3.7 20.2 1.8 0.1 7 7 796 528 TCH-2423+4248 3 44 1.7 8.8 0.5 2.35 3.2 584 194 0.9 12.8 4850 119 TCH-24249-4280 1.4 48 1.9 0.3 1.09 3.7 432 386 0.4 1.3.2 >10000 2.84 99.2 TCH-24260-4280 1.6 1.6 6.9 2.6 0.1 0.451 5.7 15.2 369 0.2 9.4 >10000 6.4 99.2 101 17.4 24064280 2.2 2.2 7.8 5.6 0.3 0.44 1.2 1.2 1.4 0.7 1.4 >10000 6.4 96.3 101 1.2 1.2 1.4 0.7 1.4 >10000 6.4 96.3 1.2 1.4 3.0.1 1.2 1.6 1.1.1 1.	TCH-2 4209-4215	2.6	37		3.7	0.2			41.4	189	0.3	13.9	> 10000	3.6	73.4
CH-2 4233-424 21 52 <0.1 1.8 <0.1 0.74 3 13.5 23 0.2 7.2 347 252 CH-2 4243-4240 3 48 0.5 2.35 3.2 5.8.4 119 0.0 1.3.3 2520 65.9 CH-2 4269-4260 2.1 40 8.1 2.8 4.8 4.4 1180 0.1 1.3.3 2520 65.9 CH-2 4269-4260 1.6 1.5 6.9 0.4 0.451 5.7 15.2 360 0.2 9.4 > 1000 1.5 50.7 CH-2 4269-4268 2.2 2.1 7.8 5.6 0.3 0.644 2.4 11.2 11.0 0.6 4.953 101 101 102 10.2 11.4 1.4 1.4 1.4 1.0 1.4 1.0 1.1 1.0 1.1 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4225-4233														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-					-		-		-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-						-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-				-		-			-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														1.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														6.84	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-			0.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														13 42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4320-4330	1.1				0.2	1.3		32.8	64		10.2	9560		63.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4330-4340	1	85	0.3	3.2	0.2	0.78	5	58.1	95	0.3	15.2	332		95.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4340-4350	0.4	39	< 0.1	1.8	0.1	0.714	3.1	30.9	30	0.2	9.3	196		25.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TCH-2 4390-4400														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-						-		-	-	-		0.00	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												-		3.52	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	-		-	-				-	-		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
TCH-2 4959-4970 2.3 40 < 0.1 4.3 0.2 0.126 4.5 38.7 4 0.6 16.3 489 80.5 TCH-2 4970-4982 2.1 36 <0.1															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	-	-		-		-		-				
TCH-2 4982-4991 2.3 68 0.8 3.2 0.2 0.462 3.7 34 5 0.4 12.9 4480 111 TCH-2 4991-5001 2.8 111 0.3 5.2 0.3 0.455 6.2 40.7 6 0.5 15.3 4140 44.4 TCH-2 5001-5010 2.2 61 0.2 4.2 0.3 0.395 4 44.4 3 0.6 14.1 1610 122 TCH-2 5010-5020 2 82 0.5 2 0.1 <0.005			-												
TCH-2 4991-5001 2.8 111 0.3 5.2 0.3 0.455 6.2 40.7 6 0.5 15.3 4140 44.4 TCH-2 5001-5010 2.2 61 0.2 4.2 0.3 0.395 4 44.4 3 0.6 14.1 1610 122 TCH-2 5010-5020 2 82 0.5 2 0.1 <0.005															
TCH-2 5010-5020 2 82 0.5 2 0.1 < 0.005 4.6 30.4 < 2 0.2 9.6 670 90 TCH-2 5020-5030 1.3 175 < 0.1	TCH-2 4991-5001	2.8	111	0.3	5.2	0.3	0.455	6.2	40.7		0.5	15.3	4140		44.4
TCH-2 5020-5030 1.3 175 < 0.1 1.2 < 0.1 < 0.005 3.6 23.8 2 < 0.1 5.5 131 15.9 TCH-2 5030-5040 1.4 133 < 0.1	TCH-2 5001-5010	2.2	61	0.2	4.2	0.3	0.395	4	44.4	3	0.6	14.1	1610		122
TCH-2 5030-5040 1.4 133 < 0.1 1.4 < 0.01 < 0.005 5.6 38.1 3 < 0.1 7.9 670 68 TCH-2 5040-5050 1.9 71 < 0.1	TCH-2 5010-5020	2	82	0.5	2	0.1	< 0.005	4.6	30.4	< 2	0.2	9.6	670		90
TCH-2 5040-5050 1.9 71 < 0.1 5.2 0.3 0.489 12.5 83.1 3 0.5 14.7 311 72.2 TCH-2 5091-5100 2.7 151 0.3 8.7 0.4 1.53 3.5 40.7 3 1 25.9 145 41.2 TCH-2 5148-5150 3.3 49 1.7 2.9 0.2 0.463 5.7 30.7 3 0.5 8.7 3620 218 TCH-2 5178-5185 2.1 15 0.3 7.3 0.4 <0.005	TCH-2 5020-5030														
TCH-2 5091-5100 2.7 151 0.3 8.7 0.4 1.53 3.5 40.7 3 1 25.9 145 41.2 TCH-2 5148-5150 3.3 49 1.7 2.9 0.2 0.463 5.7 30.7 3 0.5 8.7 3620 218 TCH-2 5179-5185 2.1 15 0.3 7.3 0.4 <0.005	TCH-2 5030-5040											-		-	
TCH-2 5148-5150 3.3 49 1.7 2.9 0.2 0.463 5.7 30.7 3 0.5 8.7 3620 218 TCH-2 5179-5185 2.1 15 0.3 7.3 0.4 <0.005															
TCH-2 5179-5185 2.1 15 0.3 7.3 0.4 < 0.005 6.3 46.6 4 0.7 24 635 195 TCH-2 5185-5190 2.1 22 0.6 6.6 0.3 < 0.005															
TCH-2 5185-5190 2.1 22 0.6 6.6 0.3 < 0.005 7.9 60.4 3 0.5 20.9 948 188 TCH-2 5190-5200 1.1 104 < 0.1															
TCH-2 5190-5200 1.1 104 < 0.1 1.5 < 0.1 < 0.05 3.7 15.2 3 0.1 3.9 319 34.9 TCH-2 5216-5217 3.1 27 2.3 4.8 0.3 0.599 5.5 45.8 4 0.7 16.9 > 1000 2.07 150 TCH-2 5217-5227 1.8 88 <0.1															
TCH-2 5216-5217 3.1 27 2.3 4.8 0.3 0.59 5.5 45.8 4 0.7 16.9 > 10000 2.07 150 TCH-2 5217-5227 1.8 88 < 0.1															
TCH-2 5217-5227 1.8 88 < 0.1 3.1 0.2 < 0.005 6.6 40.7 2 0.3 11.6 446 98.6 TCH-2 5227-5239 1.5 102 0.2 1.1 0.1 < 0.005														2.07	
TCH-2 5227-5239 1.5 102 0.2 1.1 0.1 < 0.005 3.7 23.7 3 0.2 7.4 558 73.7 TCH-2 5239-5251 2.3 55 0.3 6.2 0.4 1 4.4 46.5 38 0.5 17.7 1170 135					-									2.07	
TCH-2 5239-5251 2.3 55 0.3 6.2 0.4 1 4.4 46.5 38 0.5 17.7 1170 135						-			-						
							< 0.005								
	TCH-2 5239-5251 TCH-2 5290-5300	2.3	95	< 0.3	6.5	0.4	0.578	4.4	46.5 53.4	38	0.5	20.4	85		135

Page 3 of 3

Appendix 2d - TCH-2A Analyses

Analvte	Au	Aq	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	CuT	Fe	Ga	Ge
Analyte	7.4	~9	7.1	10	Du			Ju	04		00	0.	00	Ju	MULTI-	10	ou	
Units	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	AAS	%	ppm	ppm
Limit	5	0.1	0.01	0.5	1	1	0.1	0.01	0.1	1	0.1	1	0.1	0.1	%	0.01	1	0.1
Package Code	FA-01	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	0.01	TE-5	TE-5	TE-5
SAMPLE ID																		
TCH-2A 4090-4100	< 5	0.9	7.05	1.9	640	2	1	0.07	0.7	83	2.8	158	17	57.9		1.78	19	1
TCH-2A 4120-4130	279	92.6	4.19	163	526	1	574	< 0.01	7	812	95	333	6.8	> 10000	1.57	19.4	22	1.8
TCH-2A 4130-4140	337	95.1	2.95	248	448	< 1	361	< 0.01	7.1	1020	124	355	5.3	> 10000	2.31	24.1	18	1.4
TCH-2A 4140-4150	57	81.1	7.34	30.8	395	3	207	0.08	58.1	1020	39.7	243	38.7	> 10000	1.15	12.1	31	3.4
TCH-2A 4150-4160	113	61.1	6.26	87.5	837	1	164	0.05	7.2	254	59.6	282	8.9	6400	0.64	11.6	17	1.3
TCH-2A 4190-4200	5	2.5	7.84	4.9	876	1	2.4	0.07	1.1	113	6.5	257	10	80		2.5	16	0.7
TCH-2A 4240-4250	< 5	1.2	7.6	4.5	855	1	1.6	0.05	0.7	102	4.3	261	9.4	61.1		2.21	16	0.8
TCH-2A 4290-4300	5	2.2	7.58	10.6	857	1	3.2	0.07	1.9	96	3.1	167	10.3	142		1.91	16	0.7
TCH-2A 4300-4310	23	14.9	8.55	15.4	> 1000	1	35.3	0.08	10.2	106	12.1	166	9.4	1410		3.03	15	1.3
TCH-2A 4328.6-4329	16	35.9	9.53	20.4	> 1000	< 1	59.9	0.08	15.8	36	4.5	108	7.5	5600		1.6	13	0.7
TCH-2A 4340-4350	22	16.5	7.89	15.6	74	2	36.8	15.3	2.3	156	18.9	239	57.6	1870		8.2	17	3.5
TCH-2A 4390-4400	< 5	4.5	4.29	9.2	137	3	25.2	20.9	2.4	59	10.1	83	41.7	291		3.97	11	1
TCH-2A 4420-4430	12	5.1	3.16	6.8	177	3	3.5	14.2	0.8	36	7.5	62	5.9	1920		2.77	8	1.6
TCH-2A 4430-4440	5	1.7	6.57	8.6	357	4	1.2	12	1.1	39	18.4	54	53.5	488		3.05	14	0.6
TCH-2A 4490-4500	< 5	1.7	4.52	7.8	457	1	1.1	0.19	3.7	23	7.2	272	14.8	118		1.4	9	0.5
TCH-2A 4540-4550	6	4.2	3.8	9.9	300	2	6.2	0.53	12.7	30	8.4	280	6.7	153		4.28	10	0.5
TCH-2A 4590-4600	12	0.7	4.21	7.8	463	3	0.3	2.25	0.3	38	8	170	8.7	26.3		5.45	10	0.7
TCH-2A 4640-4650	9	9.2	4.88	6	356	3	17.8	7.54	28.9	47	9.6		19.6	57.2		3.71	11	0.6
TCH-2A 4690-4700	< 5	1	4.79	4	506	2	0.4	0.27	0.7	46	2.8	234	21.8	22.2		2.57	11	0.5
TCH-2A 4740-4750	< 5	0.5	4.29	3.3	502	2	0.5	0.32	1	32	3.7	224	12.6	47.4		2.35	10	0.5
TCH-2A 4790-4800	8	0.5	4.31	4.6	487	2	0.6	1	1	37	5.1	235	18.4	73		2.56	9	0.8
TCH-2A 4820-4830	12	40.4	2.89	5.2	164	3	49.2	5.64	8	42	7.6	199	6.9	705		4.68	8	1.9
TCH-2A 4830-4840	9	10.8	4.17	6.3	198	3	23.6	14.3	12.2	31	7.8	109	34.6	439		4.55	10	1.3
TCH-2A 4840-4850	7	2.4	3.59	3.5	368	1	3.4	13	4	30	4.4	112	11.9	81.3		1.68	7	0.4
TCH-2A 4890-4900	< 5	0.8	0.55	23	20	< 1	0.5	24.3	1.8	7	1.2	38	1.4	14.8		0.56	1	0.5
TCH-2A 4932-4937	6	1.4	2.59	3.2	332	1	2.2	9.07	2.6	28	5.4	203	2.4	82.5		1.24	4	0.3
TCH-2A 4940-4950	< 5	3.4	2.8	7.4	355	1	13.2	10.8	6.1	22	8.5	221	5.5	85.5		1.32	5	0.8
TCH-2A 4978-4985	< 5	1	0.56	10.2	11	< 1	0.4	21.5	0.7	6	0.8	33	0.4	51		0.37	1	< 0.1
TCH-2A 4985-4990	< 5	1.8	2.16	13.5	123	1	3.5	15.9	8.2	11	3.6	111	6.4	31.1		0.94	3	1.1
TCH-2A 4990-5000	< 5	0.6	0.25	3.3	21	< 1	0.2	23	1.4	4	0.7	38	0.6	18.8		0.26	< 1	< 0.1
TCH-2A 5010-5014	6	5.5	0.4	7.5	4	< 1	15.2	21.8	3.3	9	3.3	52	0.8	389		0.67	1	2.1
TCH-2A 5014-5020	11	8.3	1.16	36	21	< 1	16.3	8.88	8.8	2	12.8	56	6.8	1190		1.08	4	1.3
TCH-2A 5040-5047	< 5	1.1	1.36	7.1	205	< 1	2.9	14.6	1.4	9	3.2	71	5.4	48.7		0.97	3	0.9
TCH-2A 5047-5050	< 5	37.5	1.2	14.6	35	< 1	94	17	21.5	10	14.8	66	14.7	641		0.77	7	1.2
TCH-2A 5050-5055	< 5	5.7	0.61	13.3	4	< 1	13.1	17.9	29.1	3	21.9	97	2.7	493		0.54	3	0.5
TCH-2A 5055-5060	< 5	1.6	0.9	65.9	11	< 1	2.4	18.4	2.3	10	1.6	88	2	50		0.41	2	< 0.1
TCH-2A 5081-5086	< 5	5.8	1.51	13	63	1	10.2	13.3	12.6	12	7.8	79	12.3	363		1.17	5	1.9
TCH-2A 5090-5100	< 5	1.4	0.83	7.8	44	2	2	15.7	2	20	5.8	54	5.1	73.5		0.97	4	2

Appendix 2d - TCH-2A Analyses

Analvte	Hf	In	к	La	Li	Mq	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S	Sb	Sc
Analyte			, N	La		ing		NIC	Nu		141		1.5	110		Ŭ	0.0	00
Units	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppb	%	ppm	ppm
Limit	0.1	0.01	0.01	1	0.1	0.01	1	0.1	0.01	0.1	0.1	0.001	0.1	0.1	5	0.05	0.1	0.1
Package Code	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5
SAMPLE ID																		
TCH-2A 4090-4100	1.9	0.1	4.95	45	18.7	0.31	3110	3.2	0.16	14.1	9.5	0.022	90.5	374	18	1.35	2	6
TCH-2A 4120-4130	2	4.06	3.11	510	21.6	0.26	6400	38.1	0.09	11.4	16	0.023	1950	258	34	19.9	80.5	6.4
TCH-2A 4130-4140	1.8	5.97	1.87	691	14	0.19	5600	9.4	0.06	10.4	23.3	0.065	2090	176	< 5	24.4	91	7.1
TCH-2A 4140-4150	2.2	13	3.58	1050	55.6	0.43	9960	76.3	0.08	15	18.6	0.1	4590	402	93	11.6	14.9	8.4
TCH-2A 4150-4160	1.6	2.41	4.93	156	43.2	0.29	> 10000	51.9	0.14	14.2	16.2	0.041	1900	328	59	10.8	39.8	8
TCH-2A 4190-4200	1.5	0.14	6.97	61	17.5	0.16	4590	3.2	0.24	15.3	8.8	0.041	156	368	16	2.02	1.8	8.6
TCH-2A 4240-4250	1.5	0.15	6.83	53	16.5	0.13	2120	2.5	0.22	14.6	7.8	0.043	102	379	9	2.07	1.9	8.3
TCH-2A 4290-4300	1	0.1	6.5	49	20.8	0.15	5070	3.2	0.21	12.6	8.3	0.043	255	358	< 5	1.57	3.7	8
TCH-2A 4300-4310	1.2	0.26	8.13	56	19.7	0.14	4460	13.4	0.25	14.4	9.8	0.054	1550	432	24	2.8	45.7	8.2
TCH-2A 4328.6-4329	1.2	1.5	10.8	21	4.8	0.06	259	4.9	0.29	16.1	8.1	0.051	1680	529	< 5	2.02	243	5.9
TCH-2A 4340-4350	2.3	2.79	1.12	98	37.6	1.3	> 10000	30.3	0.07	16.1	9.9	0.039	572	168	16	5.48	4.8	9
TCH-2A 4390-4400	4.5	0.38	0.95	33	43.8	1.56	> 10000	44.4	0.07	6.9	28.9	0.073	411	168	102	1.37	5.6	12.9
TCH-2A 4420-4430	2.2	0.45	0.58	21	76.7	5.08	> 10000	57.2	0.07	8.1	17.5	0.052	144	51.9	114	1.43	7.3	6.3
TCH-2A 4430-4440	1.8	0.12	2.92	21	89.1	4.58	9580	67.3	0.18	5.1	26.8	0.159	86.3	325	46	1.16	2.3	26.3
TCH-2A 4490-4500	1.3	0.05	3.81	12	25.4	0.34	755	6.8	0.1	9.9	23.4	0.042	939	258	16	0.99	2.8	5.6
TCH-2A 4540-4550	1	0.12	2.2	16	74.9	0.99	9130	20	0.08	9.2	37.6	0.041	1650	141	14	0.69	5	6.7
TCH-2A 4590-4600	0.9	0.04	2.31	21	72.3	1.36	> 10000	10.7	0.18	8.1	53.6	0.038	39.6	151	< 5	0.47	3.4	7.6
TCH-2A 4640-4650	2	0.19	2.65	25	77.4	1.71	> 10000	13.9	0.1	11.7	35.2	0.053	2440	214	33	0.84	2.8	8.5
TCH-2A 4690-4700	1.3	0.03	3.66	23	60.4	0.86	3200	2	0.1	11.5	21.6	0.053	124	226	7	0.09	1.1	7.9
TCH-2A 4740-4750	1.1	0.03	3.48	17	44.3	0.69	9340	2.6	0.11	9.6	20.5	0.041	179	213	< 5	0.33	1.1	6.8
TCH-2A 4790-4800	0.8	0.03	3.25	19	57	0.9	3950	2.5	0.1	9.7	21.5	0.044	160	216	11	0.52	1.6	7.1
TCH-2A 4820-4830	2.2	0.4	1.09	22	80.9	1.25	9020	52.7	0.05	7.6	25	0.04	1030	90.8	40	0.84	140	6.2
TCH-2A 4830-4840	2.1	1	1.48	16	58.1	1.82	> 10000	37.4	0.06	9	21.7	0.039	1150	162	22	0.79	2.7	6.9
TCH-2A 4840-4850	2.5	0.06	2.84	15	39.2	0.99	8920	12.8	0.08	7.7	18.9	0.033	443	200	45	0.47	2.2	5.6
TCH-2A 4890-4900	1.5	0.02	0.06	4	21.6	7.64	1440	0.9	0.05	1.7	6.4	0.006	572	4.7	18	0.28	6.8	2.3
TCH-2A 4932-4937	1.3	0.08	2.22	12	18.8	4.72	5080	64.4	0.11	7.3	15.6	0.042	425	112	80	0.31	1.4	3.8
TCH-2A 4940-4950	2	0.28	2.32	11	15.7	3.65	5190	33.4	0.11	5.7	16.6	0.045	184	143	28	0.48	3.5	4.4
TCH-2A 4978-4985	1.4	0.02	0.07	4	1	11.7	543	1.8	0.1	1.3	6.4	0.007	81.5	2.4	13	0.29	4.1	2.9
TCH-2A 4985-4990	4.2	0.04	0.38	6	15.5	11.3	4910	1.9	0.13	3.5	12.5	0.021	413	32	< 5	0.36	8.6	4.7
TCH-2A 4990-5000	0.8	0.01	0.08	2	1.5	14.4	542	0.9	0.12	1	4.7	0.009	53.6	4.1	20	0.38	1	2.7
TCH-2A 5010-5014	0.8	0.11	0.04	5	6.7	11.7	3220	0.7	0.09	0.8	7.8	0.012	599	1.2	8	0.47	4.5	2.7
TCH-2A 5014-5020	2.1	0.73	0.27	< 1	90.2	18.8	3400	38.6	0.22	7.2	13.9	0.006	660	32.8	31	0.82	9.1	4.8
TCH-2A 5040-5047	2.6	0.14	1.32	3	31.4	7.97	5750	38.2	0.13	3.7	11.2	0.029	40.5	86.9	86	0.25	3.4	2.9
TCH-2A 5047-5050	6	0.53	0.6	3	112	10.5	2030	3	0.13	5.2	15.3	0.023	2180	114	58	0.73	9.2	4.4
TCH-2A 5050-5055	2.5	0.72	0.08	1	18.8	11.5	1970	14.5	0.11	2.3	10.5	0.012	369	8.6	36	0.7	5.1	3.4
TCH-2A 5055-5060	3.7	0.02	0.05	5	6.2	10.1	1480	0.7	0.07	2.1	11.1	0.076	413	4	151	0.29	2.7	3.2
TCH-2A 5081-5086	4.5	0.3	0.64	5	56.6	11.7	4780	10.2	0.13	4.1	17.1	0.038	935	117	33	0.58	7.6	4.8
TCH-2A 5090-5100	4.1	0.22	0.31	9	36.2	10.8	6740	50.3	0.08	7.7	19.2	0.03	116	41.5	31	0.33	5.1	4.5

Appendix 2d - TCH-2A Analyses

Analyte	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Y	Zn	Zn	Zr
	-	-						_					MULTI-	
Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ICP	ppm
Limit	0.1	1	0.1	0.1	0.1	0.005	0.1	0.1	2	0.1	0.1	1	%	0.1
Package Code	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	0.01	TE-5
SAMPLE ID														
TCH-2A 4090-4100	4.2	39	1.1	0.1	12	0.167	3.1	6.5	33	8.3	16	381		53.5
TCH-2A 4120-4130	4.1	31	0.8	15.1	21.6	0.138	3.2	7.1	19	10.3	16.3	1970		55.6
TCH-2A 4130-4140	5.2	28	0.7	13	11.9	0.136	2.4	23.1	18	14.8	28.3	3120		53.3
TCH-2A 4140-4150	6.7	20	1.1	6.9	21.5	0.193	4.6	27.9	29	51.1	49.7	16200	1.62	69.1
TCH-2A 4150-4160	3.6	75	1	5.7	17.3	0.192	3.5	5.3	16	720	13.6	2070		53.6
TCH-2A 4190-4200	3.3	63	1.1	0.2	9.6	0.22	3.1	6.1	12	13.1	15.8	389		44.9
TCH-2A 4240-4250	3.5	60	1	0.4	12.4	0.208	3.6	5.1	12	9.7	15.4	231		46.9
TCH-2A 4290-4300	2.1	60	0.9	0.4	14.7	0.178	3.8	4.9	12	7.2	15.4	567		36.1
TCH-2A 4300-4310	2	90	1	3.2	19.9	0.208	4.1	4.9	10	12.3	19.5	2730		43
TCH-2A 4328.6-4329	1.1	84	1.1	2.2	17.6	0.223	4.2	8	4	24.9	45.2	4250		45.9
TCH-2A 4340-4350	3.2	85	1.1	1.8	27.1	0.216	1.4	3.4	17	67.2	51.5	723		67.7
TCH-2A 4390-4400	1.7	53	0.5	0.6	7.7	0.374	0.9	8.5	98	91.6	21.1	699		154
TCH-2A 4420-4430	1.2	63	0.5	0.2	3.7	0.241	0.5	4.6	54	12.7	18.3	298		63.9
TCH-2A 4430-4440	1.5	64	0.4	0.1	11.9	0.516	3.1	3.3	186	36.2	25.5	411		41.5
TCH-2A 4490-4500	0.6	32	0.7	0.2	3.3	0.357	1.8	2.8	36	73.5	6.5	991		36.3
TCH-2A 4540-4550	1.1	23	0.7	0.5	5.6	0.332	1.1	8.2	42	89.3	13.2	3540		29.4
TCH-2A 4590-4600	0.2	47	0.5	< 0.1	4.8	0.293	1.2	2.9	44	24.3	16.6	276		22.9
TCH-2A 4640-4650	0.5	44	0.8	0.6	8.5	0.405	1.4	13	58	127	19.5	8170		55.5
TCH-2A 4690-4700	< 0.1	46	0.8	< 0.1	5.2	0.396	1.4	7.9	46	119	10.4	364		32.1
TCH-2A 4740-4750	< 0.1	50	0.6	< 0.1	4.8	0.341	1.5	3.4	42	75.5	9.2	337		27.7
TCH-2A 4790-4800	< 0.1	47	0.6	< 0.1	6	0.349	1.4	6.1	41	94.1	9.2	410		22.7
TCH-2A 4820-4830	< 0.1	38	0.5	1.4	4.6	0.295	0.8	6.7	33	121	13.9	1930		64.1
TCH-2A 4830-4840	0.1	74	0.6	0.9	7.3	0.319	1	9.7	47	124	19.9	3520		61.8
TCH-2A 4840-4850	< 0.1	64	0.5	< 0.1	3.8	0.273	1.3	6.2	41	88.1	18.2	1280		84.2
TCH-2A 4890-4900	1.9	55	0.2	< 0.1	4.3	0.053	< 0.1	3	21	16	4.2	248		61.8
TCH-2A 4932-4937	< 0.1	49	0.4	0.4	1.9	0.274	0.6	2.3	27	1.9	16.1	813		37.9
TCH-2A 4940-4950	< 0.1	67	0.4	0.3	4	0.249	1.1	4.4	31	40.2	14.4	1910		65.2
TCH-2A 4978-4985	< 0.1	72	0.1	< 0.1	7.7	0.038	< 0.1	4.9	13	10.8	3.6	128		57.2
TCH-2A 4985-4990	4.4	12	0.3	< 0.1	6	0.141	0.2	4.2	34	2.8	8.2	2040		154
TCH-2A 4990-5000	< 0.1	73	0.1	< 0.1	2.8	0.019	< 0.1	4.7	15	4.2	2.3	208		33
TCH-2A 5010-5014	< 0.1	56	0.1	0.3	2.1	0.027	0.4	2.8	6	6.3	1.6	896		31.2
TCH-2A 5014-5020	< 0.1	12	0.3	0.2	3	0.069	0.7	2.5	8	21.5	1.9	3130		92.9
TCH-2A 5040-5047	2.5	28	0.3	0.3	3.7	0.142	0.5	3.9	57	1.6	8	505		89
TCH-2A 5047-5050	2.1	45	0.4	2.7	7.6	0.131	2.1	12.5	16	8.6	8.6	5880		231
TCH-2A 5050-5055	2	26	0.2	0.1	3.6	0.059	0.2	2.7	12	9.6	2.7	9270		104
TCH-2A 5055-5060	2	39	0.3	< 0.1	2	0.083	< 0.1	9.1	33	10.8	8.8	530		155
TCH-2A 5081-5086	1.6	29	0.4	0.2	3.2	0.151	0.7	7.6	27	2.4	9.1	2570		175
TCH-2A 5090-5100	2.2	9	0.5	< 0.1	1.9	0.213	0.2	9.1	16	3.4	9.9	658		155

Appendix 2e - TM-13 Analyses

Analvte	Au	Ag	AI	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga	Ge
Units	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Limit	5	0.1	0.01	0.5	1	1	0.1	0.01	0.1	1	0.1	1	0.1	0.1	0.01	1	0.1
Package Code	FA-01	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5		TE-5	TE-5	TE-5	TE-5	TE-5	TE-5
SAMPLE ID																	
TM-13 190-200	104	2.8	7.75	12.8	948	2	1.5	2.49	2.9	65	31.3	195	9.1	519	7.03	20	1.1
TM-13 240-250	5	1.5	8.12	10.2	462	2	0.9	0.23	1.1	56	20.7	122	35.9	109	4.49	21	1
TM-13 340-350	20	1.6	7.56	11.1	> 1000	2	0.5	0.33	2	74	9.3	308	21.1	166	3.12	19	0.9
TM-13 1490-1500	< 5	0.7	7.57	7.9	309	2	1.7	0.95	0.5	81	12	274	17	83.9	6.03	19	1
TM-13 1540-1550	5	0.5	7.04	2	646	2	0.4	0.42	0.5	105	3.8	292	13.5	134	2.47	17	0.6
TM-13 1590-1600	< 5	0.6	7.06	15.9	578	3	1.5	1.6	0.6	109	3.6	353	17.8	340	2.72	18	0.9
TM-13 1640-1650	< 5	0.5	5.38	377	210	2	11.6	1.06	1.4	72	5.8	302	30	84.4	3	15	0.9
TM-13 1690-1700	< 5	0.6	5.97	< 0.5	672	2	0.9	2.06	1.3	91	2.9	352	13.5	118	2.16	14	0.8
TM-13 1790-1800	< 5	0.6	6.07	8.9	628	3	1.5	9.35	1.6	86	5.8	233	13.8	61.3	2.68	13	0.2
TM-13 1840-1850	< 5	0.5	6.06	9.8	585	2	0.9	4.16	0.6	75	4.1	345	21.1	134	2.43	14	0.6
TM-13 1890-1900	7	0.8	6.59	14.2	785	3	0.9	3.37	1.3	88	6.4	280	33	157	2.82	18	0.8
TM-13 1940-1950	< 5	0.5	6.68	4.3	398	2	1	0.77	0.4	91	5.5	409	9.9	114	3.46	17	0.7
TM-13 1990-2000	< 5	0.3	7.3	2	865	3	0.5	0.68	0.4	114	4	253	15.7	185	2.59	18	1
TM-13 2040-2050	< 5	0.4	7.51	4.8	502	2	1.2	0.7	0.4	104	7.9	406	6.3	161	4.45	20	1.2
TM-13 2090-2100	8	1.1	7.98	9	615	2	1	1.52	3	81	13.9	207	8.5	189	6.27	24	1.4
TM-13 2140-2150	< 5	0.5	6.56	8.6	250	2	0.8	2.1	0.5	42		466	15.1	142	7.52	19	0.9
TM-13 2190-2200	11	0.9	7.63	10.6	840	3	0.8	0.95	0.9	101	4.6	303	19.3	265	3.18	18	0.8
TM-13 2490-2500	< 5	0.7	7	1.6	378	3	1	1	0.5	100		405	28	294	3.22	22	1.9
TM-13 2540-2550	9	1.2	9.13	3.7	> 1000	3	0.7	0.5	0.7	132		207	29	112	2.89	27	1
TM-13 2590-2600	< 5	2	7.55	4.9	663	3	0.9	0.5	5.7	95		406	16.7	333	2.63	17	1.4
TM-13 2630-2640	< 5	1.7	7.39	5.4	> 1000	2	1.2	0.38	5.1	103		355	16.7	378	3.12	20	1.2
TM-13 2690-2700	< 5	4.4	7.63	6	> 1000	3	19.6	0.65	5.2	121	3.8	362	20.7	839	2.64	21	1.2
TM-13 2740-2750	< 5	3.6	7.99	13.6	> 1000	2	3.6	0.32	4	113		336	13.1	756	3.17	22	1.1
TM-13 2790-2800	< 5	0.8	7.73	5.1	> 1000	3	0.5	0.46	0.7	131	4	538	11.1	250	3.28	19	0.9
TM-13 2840-2850	< 5	0.7	7.68	3.9	931	3	1	0.33	0.5	102		328	9.4	261	3.37	19	1
TM-13 2890-2900	< 5	2.9	7.63	13.3	828	3	4.3	0.62	1.6	106	-	372	8.1	818	3.04	20	0.9
TM-13 2940-2950	< 5	1.2	8.02	4.9	981	3	2.1	0.54	1.4	108		350	10	299	3.07	21	1
TM-13 2990-3000	< 5	0.5	7.76	1.8	949	3	0.4	0.72	0.6	106		462	9.3	284	3.26	19	1
TM-13 3040-3050	< 5	0.4	7.98	1.1	881	3	0.4	0.8	0.7	109	3.8	400	7.3	294	3.37	20	0.9
TM-13 3090-3100	< 5	0.5	7.75	2.2	> 1000	3	0.6	1.13	0.4	108		431	17.5	248	3.42	22	1.4
TM-13 3140-3150	< 5	0.8	7.78	13	771	2	0.3	1.22	0.7	100	-	314	7.3	310	5.1	20	1
TM-13 3190-3200	< 5	6.7	7.58	5.5	500	5	3.4	0.33	1.5	101	3	74	29.1	580	2.78	21	1
TM-13 3240-3250	< 5	1.2	4.21	5.3	168	2	2	0.18	1.5	51	4.5	426	22.6	391	2.29	10	1.1
TM-13 3290-3300	< 5	0.6	6.21	< 0.5	745	3	0.3	0.98	0.5	102		288	25.9	164	2.34	19	1.1
TM-13 3340-3350	6	0.4	6.76	5.2	690	3	0.4	0.38	0.3	121	4.9	313	30.7	208	2.61	23	1.2
TM-13 3390-3400	< 5	0.4	6.05 5.73	2.9	820	2	0.5	0.17	0.4	109	5.4 3.9	404 351	18.6 19.7	192 185	2	18 15	1.3
TM-13 3440-3450	< 5	0.3		1.6	438	2	0.3	0.1	0.3	62			-		-	-	0.9
TM-13 3490-3500	7	0.3	6.14	3.4 2.5	640 747	3	0.2	0.1	0.3	91 82	3.1	311	28.4 22.6	203	2.06	17	1.2
TM-13 3540-3550	< 5	0.4	6.16 7.59	-		2	0.3		0.4	82 94		239	48.3	141 78.4	1.94 2.21	15 25	0.7 1.2
TM-13 3590-3600	< 5	0.5		3.6	638 677	-	0.5	0.16		94 87	4.8	38 274		-	2.21		
TM-13 3640-3650	10	0.7	5.85	7.9	-	2	0.5	•	0.6	-	5.4		31.6	106		18	1.1
TM-13 3890-3900	11	5	3.73	35.4	485	1	2.4	9.66	18.9	80 54	12.2	124 380	13.6	97.7	3.29	12	0.1
TM-13 3925-3931	30	7.4	5.07	28.4	983	1	3.9	2.2	16.3	-	13.2		13.1	687	2.65	13	0.9
TM-13 3962-3972	24	7.1	4.38	40.7	477	2	14.8	1.33	9.5	38		463	35.9	550	2.39	14	1.1
TM-13 4040-4050	< 5	0.5	0.17	2.7	65	< 1	< 0.1	36.2	1.8	4	0.7	31	1.3	22.8	0.29	< 1	< 0.1

Appendix 2e - TM-13 Analyses

Analyte	Hf	In	к	La	Li	Ma	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S	Sb
Units	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppb	%	ppm
Limit	0.1	0.01	0.01	1	0.1	0.01	1	0.1	0.01	0.1	0.1	0.001	0.1	0.1	5	0.05	0.1
Package Code	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5
SAMPLE ID			-			-		-	-				-	-	-		
TM-13 190-200	5.1	0.22	3.12	33	28.6	2.99	8020	2.3	1.78	7.7	66.9	0.161	338	183	6	2.98	9.1
TM-13 240-250	4.9	0.11	4.7	29	9.4	0.46	276	1.4	0.19	8.4	54.3	0.052	232	300	< 5	4.89	4.5
TM-13 340-350	6.8	0.13	7.64	36	8.7	0.28	415	2.6	0.29	14.6	21.9	0.069	290	451	< 5	2.5	4.1
TM-13 1490-1500	3.2	0.05	1.9	40	26.8	1.23	886	1.3	2.02	6.6	20.7	0.25	42	154	< 5	6.4	3.2
TM-13 1540-1550	6.4	0.04	5.87	54	12	0.44	1080	2.3	1.15	11.3	16	0.032	34.9	276	< 5	1.85	2.5
TM-13 1590-1600	5.8	0.1	5.67	56	20.2	0.52	1320	9.6	0.64	11.6	14.3	0.034	65	317	6	2.33	4.2
TM-13 1640-1650	5.2	0.65	2.19	36	60	0.5	943	10.9	0.16	12.4	25.5	0.052	141	175	42	3.29	25.9
TM-13 1690-1700	6.1	0.05	4.96	47	77.5	2.79	1800	1.9	0.23	15.7	13.7	0.038	153	252	8	1.75	3.2
TM-13 1790-1800	5.5	0.21	3.79	44	48.1	2.09	6110	4.3	0.28	15	17.9	0.058	144	205	29	2.57	6.4
TM-13 1840-1850	4.5	0.12	3.97	38	48.8	1.65	2540	1.8	0.51	12.1	17.7	0.06	64.8	232	6	2.07	6.2
TM-13 1890-1900	6.5	0.11	5.12	45	36	1.35	3250	3.1	0.39	13.2	19.9	0.075	90.7	325	13	2.39	5.3
TM-13 1940-1950	4.1	0.03	2.46	46	18.3	0.8	800	1.4	3.2	7.8	16.4	0.148	30.2	134	< 5	3.12	2.7
TM-13 1990-2000	2.7	0.07	4.56	58	19.8	0.76	1020	2.4	1.56	9.3	14.7	0.038	41	288	7	1.27	2.1
TM-13 2040-2050	3.4	0.05	3.15	53	24.7	1.01	1160	1.8	3.77	8.3	20	0.161	20.1	150	< 5	3.56	2.6
TM-13 2090-2100	3.6	0.1	2.99	40	29.6	1.8	2210	2.8	3.96	10.9	30.9	0.238	300	156	< 5	3.09	4.9
TM-13 2140-2150	1.3	0.07	1.32	21	31.4	1.68	2250	1.8	3.72	5.2	49.5	0.131	26.6	84.5	< 5	5.11	4.2
TM-13 2190-2200	4.6	0.2	5.96	51	24.5	0.53	1070	3.3	2.08	13.8	21.5	0.036	42.1	327	5	1.71	3.5
TM-13 2490-2500	4.7	0.09	3.85	49	37.3	0.73	523	2.9	0.25	13.3	21.1	0.027	46.5	317	9	1.98	4.3
TM-13 2540-2550	5.5	0.15	7.6	67	18.7	1.01	3260	1.7	1.04	19.3	15.7	0.051	112	470	< 5	1.78	2.5
TM-13 2590-2600	3.4	0.21	3.98	46	20.7	0.68	1820	1.9	2.33	13.1	18.7	0.041	421	258	< 5	1.58	2.7
TM-13 2630-2640	4.1	0.91	5.46	52	18.4	0.5	2000	3.2	1.92	14.1	21.8	0.042	330	293	< 5	1.72	3.4
TM-13 2690-2700	6.4	1.4	6.45	63	24.6	0.6	2750	1.9	0.7	13.4	18.4	0.044	474	388	< 5	1.79	7.4
TM-13 2740-2750	5.1	0.88	5.73	56	12.6	0.46	1580	2.8	2.7	15	20.6	0.045	576	297	< 5	1.67	30.5
TM-13 2790-2800	4.9	0.12	6.07	67	9.9	0.38	1820	2.3	2.76	13.4	21.4	0.042	86	292	< 5	1.34	2.6
TM-13 2840-2850	3.9	0.14	5.28	51	12	0.51	1880	3.1	3.26	15.4	21.2	0.043	46.7	257	< 5	1.38	2.3
TM-13 2890-2900	3.7	0.33	4.68	53	16	0.47	2000	2.2	2.92	16.7	19.2	0.044	157	223	< 5	1.51	5.1
TM-13 2940-2950	4.4	0.27	4.96	54	11.9	0.46	1370	3.1	3.6	16.8	22.4	0.045	166	237	< 5	0.96	2.2
TM-13 2990-3000	4.5	0.09	5.17	53	15.3	0.5	1300	2.7	3.3	17	24.7	0.045	49.1	251	< 5	1.05	2
TM-13 3040-3050	4	0.12	4.37	55	11.3	0.37	939	3.4	4.29	17	25.1	0.045	51.2	198	< 5	0.84	1.9
TM-13 3090-3100	2.7	0.13	5.62	54	23.7	0.88	1240	2.4	1.96	15.2	22.3	0.044	44.3	383	< 5	1.32	2.6
TM-13 3140-3150	3.2	0.09	3.16	50	18.1	0.86	1390	3.5	4.19	14.3	28.8	0.177	175	140	< 5	1.86	10.3
TM-13 3190-3200	4.6	0.22	5.16	49	25	0.73	1640	2.4	0.68	16	15.8	0.023	235	455	6	1.37	3.8
TM-13 3240-3250	1.5	0.1	2.59	26	20.9	0.36	874	4	0.16	6.8	17.9	0.023	175	294	10	1.03	6.4
TM-13 3290-3300	4	0.06	4.75	58	17.4	0.47	566	2.6	0.51	12.2	15.1	0.015	68.8	406	< 5	1.08	2.1
TM-13 3340-3350	4.5	0.1	5.07	63	18.8	0.5	520	8.5	0.96	13.9	18.1	0.027	52.3	395	13	0.97	2.7
TM-13 3390-3400	2.9	0.08	5.93	57	16.2	0.21	293	8.5	0.19	13.5	16.8	0.026	43.4	392	20	0.78	4.2
TM-13 3440-3450	3.7	0.05	6.01	32	9.4	0.19	271	7.6	0.22	13.6	16.4	0.003	18	403	18	0.47	2.4
TM-13 3490-3500	4.9	0.06	5.79	48	20.8	0.31	335	6.5	0.35	13.9	16.5	0.014	29.5	434	7	0.61	3.6
TM-13 3540-3550	4	0.03	6.28	44	24.5	0.31	489	4.9	0.24	12	14.5	0.015	45.9	426	< 5	0.98	2.1
TM-13 3590-3600	3.6	0.09	5.64	49	23	0.47	697	5.1	0.22	14.7	11.7	0.036	50.4	521	< 5	1.6	3.5
TM-13 3640-3650	3.6	0.07	5.19	45	20.7	0.34	826	7.6	0.19	13	17.3	0.056	117	414	< 5	1.62	4.3
TM-13 3890-3900	4.7	0.18	2.65	43	77.6	4.08	> 10000	100	0.15	12.4	31.4	0.086	3950	185	80	0.94	9.9
TM-13 3925-3931	1.9	0.11	5.98	30	28	0.58	2950	44.8	0.26	8.9	38	0.17	1840	407	181	2.24	7.6
TM-13 3962-3972	3.6	0.34	3.96	22	34.3	0.71	3100	185	0.17	9.7	36	0.162	1300	337	249	1.4	6.9
TM-13 4040-4050	0.1	0.01	0.14	3	5.2	0.16	2250	3	0.05	0.5	5.7	0.009	56.2	11.7	9	0.26	1.2

Appendix 2e - TM-13 Analyses

Analyte	Sc	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Y	Zn	Zr
Units	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Limit	0.1	0.1	1	0.1	0.1	0.1	0.005	0.1	0.1	2	0.1	0.1	1	0.1
Package Code	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5	TE-5
SAMPLE ID														
TM-13 190-200	36.1	1.6	260	0.6	0.7	5.6	0.684	2.2	2.4	230	5.2	28.3	1210	206
TM-13 240-250	26.9	2.3	27	0.7	0.6	14.7	0.448	3.3	6.1	128	3.1	27.3	431	180
TM-13 340-350	19.6	3.1	89	1.1	0.9	18.4	0.391	5.4	5.5	48	6.8	29.8	614	247
TM-13 1490-1500	32.1	2.5	29	0.5	0.6	7.7	0.527	2.3	1.9	94	5.1	18.7	169	118
TM-13 1540-1550	13.9	2.1	39	0.9	0.2	31	0.181	4.4	6.4	3	4	18	180	216
TM-13 1590-1600	14.9	3.9	47	0.9	0.6	29.2	0.203	5.2	6.4	4	5.8	22.7	118	207
TM-13 1640-1650	13.3	10.3	29	0.9	0.7	14.8	0.292	32	8.2	63	55.5	23.7	222	181
TM-13 1690-1700	14.3	1.9	40	1.1	0.3	16.1	0.21	3.7	5.1	11	5.7	30.6	332	214
TM-13 1790-1800	19.1	3.6	76	1.1	0.4	18.4	0.345	2.9	7	48	8.3	46.1	395	189
TM-13 1840-1850	17.9	4.1	71	0.9	0.5	14.7	0.302	2.3	4.8	23	5.3	31	128	162
TM-13 1890-1900	18.4	3.2	77	1	1.2	18.7	0.351	3.8	6.3	49	8.5	34.2	408	237
TM-13 1940-1950	23.2	2	41	0.6	0.3	11.4	0.31	1.6	3.1	17	2.6	22.1	69	153
TM-13 1990-2000	19.3	3.5	55	0.7	0.2	14.1	0.143	2.7	2.6	3	4.9	27.7	59	91.4
TM-13 2040-2050	26.7	2.6	60	0.7	0.5	12.3	0.403	1.7	3.4	35	4.2	24.9	83	119
TM-13 2090-2100	37.3	3.8	98	0.9	1.4	10.8	0.788	1.6	3.2	110	7.5	41	886	130
TM-13 2140-2150	41.6	1.8	58	0.4	1.9	3.5	0.711	0.9	1.2	288	6.3	24	180	45.8
TM-13 2190-2200	16.1	3.5	69	1	0.5	29.1	0.246	3.1	6.4	15	8.3	23.7	235	164
TM-13 2490-2500	17.3	3.5	63	1	0.5	18.5	0.206	2.2	5.1	< 2	4	26.7	1100	156
TM-13 2540-2550	25.9	3.4	94	1.4	0.6	17.3	0.424	4.5	4.1	10	14.5	31.5	197	217
TM-13 2590-2600	20	2.7	62	0.9	0.1	13.6	0.293	2.8	3.4	< 2	6.9	20.9	1820	128
TM-13 2630-2640	20.9	3.5	72	1	0.7	14.2	0.313	2.9	3.9	< 2	10.9	27.9	1720	164
TM-13 2690-2700	22.6	3.1	60	1	1.6	15.6	0.303	3.6	4.3	< 2	17.2	22.9	1880	249
TM-13 2740-2750	23.5	4.7	71	1.1	0.5	16.3	0.341	2.7	4.4	< 2	28	32.5	1130	199
TM-13 2790-2800	22	3.2	101	1	0.1	15.5	0.305	2.6	3.8	< 2	6.4	41.6	133	178
TM-13 2840-2850	22.4	4.1	56	1.1	0.1	15.8	0.346	2.2	3.4	< 2	10.2	36.6	115	151
TM-13 2890-2900	21.7	8.8	54	1.2	1.3	15.6	0.366	1.9	3.9	< 2	30.5	40.7	539	146
TM-13 2940-2950	22.2	4	74	1.2	0.5	15.8	0.372	1.9	3.7	< 2	15.7	38.6	365	170
TM-13 2990-3000	22.1	4.2	82	1.2	< 0.1	15.3	0.371	2	3.4	< 2	5.9	45.1	123	176
TM-13 3040-3050	23	3.9	76	1.2	0.1	15.5	0.374	1.5	3.6	< 2	12.3	42.2	105	149
TM-13 3090-3100	22.7	3.8	104	1.1	< 0.1	14.2	0.34	2.5	3	< 2	3.8	41.1	101	98.4
TM-13 3140-3150	30.3	4.3	83	1	0.5	11.1	0.558	1.3	3	42	7.8	40.9	185	121
TM-13 3190-3200	21.1	4.6	54	1.2	3.1	15.8	0.238	3.4	4.1	5	7.4	36.7	483	166
TM-13 3240-3250	11.6	2.4	14	0.5	0.1	8.4	0.162	1.9	1.9	< 2	9.3	14.3	432	47
TM-13 3290-3300	13.2	2	38	1	0.3	19.4	0.184	3.1	4	< 2	5.8	20.5	712	140
TM-13 3340-3350	14.9	5.1	47	1.1	< 0.1	23.7	0.212	3.2	6	8	8.4	28.3	86	149
TM-13 3390-3400	11.5	3.1	47	1	0.1	18.8	0.163	3.5	6.5	< 2	5.7	26.1	120	99.7
TM-13 3440-3450	8.9	3	39	1.2	< 0.1	27.1	0.075	3.6	7.9	< 2	4.8	20.8	82	103
TM-13 3490-3500	12	6.3	45	1.1	< 0.1	27.4	0.14	3.6	8.5	7	3.9	24	76	169
TM-13 3540-3550	10.1	2	43	0.9	< 0.1	18.5	0.123	3.9	5.2	13	5.4	17.9	82	126
TM-13 3590-3600	14.6	6.1	38	1.1	0.2	22.2	0.219	3.8	5.7	39	12	27.2	186	118
TM-13 3640-3650	16.3	1.9	39	1	0.1	16.4	0.317	3.6	4.1	42	20.8	22.2	191	123
TM-13 3890-3900	23.7	3.5	96	0.9	0.2	8.9	0.407	2.4	7.2	128	74.9	26.4	3150	165
TM-13 3925-3931	11.3	2.8	132	0.7	2.7	12.6	0.292	5.8	5.8	86	49	13.8	2660	59.5
TM-13 3962-3972	16.6	3.8	69	0.7	0.9	11	0.328	3	16	139	91.7	15.5	1190	108
TM-13 4040-4050	3.4	0.6	160	< 0.1	< 0.1	0.5	0.016	0.2	4.8	26	3.4	4.5	343	3.9

Appendix 3

Analytical Certificates for the Author's Confirmation Samples

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: APEX GEOSCIENCE LTD 200 - 9797 45 AVE. EDMONTON AB T6E 5V8

CERTIFICATE RE12094708

Project: Regal

P.O. No.:

This report is for 7 Rock samples submitted to our lab in Reno, NV, USA on 1-MAY-2012.

The following have access to data associated with this certificate:

ALS Canada Ltd.

ANDREW TU

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	
CRU- 21	Crush entire sample > 70% - 6 mm	

ANALYTICAL PROCEDURES DESCRIPTION ALS CODE INSTRUMENT ME-ICP61 33 element four acid ICP- AES ICP- AES Ore Grade Ag - Four Acid VARIABLE Ag- 0G62 ME- OG62 Ore Grade Elements - Four Acid ICP- AES Cu- 0G62 Ore Grade Cu - Four Acid VARIABLE Pb- OG62 Ore Grade Pb - Four Acid VARIABLE Au-ICP21 Au 30g FA ICP- AES Finish ICP- AES The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim 'or deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him/her and based on an evaluation of all engineering data which is available concerning any proposed project. Statement required by Nevada State Law NRS 519

To: APEX GEOSCIENCE LTD ATTN: ANDREW TURNER 200 - 9797 45 AVE. EDMONTON AB T6E 5V8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: APEX GEOSCIENCE LTD 200 - 9797 45 AVE. EDMONTON AB T6E 5V8

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 12- MAY- 2012 Account: GEOAPE

Project: Regal

CERTIFICATE OF ANALYSIS RE12094708

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME- ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME- ICP61 Bi ppm 2	ME-1CP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
12ATP001 12ATP002 12ATP003 12ATP004 12ATP005		0.98 1.18 0.70 1.14 0.76	0.072 0.007 0.005 0.154 3.37	8.1 1.8 1.0 2.5 >100	2.72 4.95 7.80 3.66 1.49	106 54 46 29 959	500 90 3680 100 90	<0.5 <0.5 1.7 <0.5 <0.5	12 10 7 4 1320	0.15 0.05 0.02 0.03 0.05	<0.5 4.4 <0.5 <0.5 3.3	2 9 1 4 48	15 8 8 10 7	>10000 153 39 237 >10000	1.23 2.35 2.13 1.58 13.95	10 10 20 10 <10
12ATP006 12ATP007		1.34 0.34	0.009 0.046	1.7 7.4	6.64 2.69	11 3670	750 190	0.7 0.5	3 9	0.26 0.02	<0.5 0.8	15 4	5 12	59 >10000	3.21 2.93	10 10

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: APEX GEOSCIENCE LTD 200 - 9797 45 AVE. EDMONTON AB T6E 5V8

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 12- MAY- 2012 Account: GEOAPE

Project: Regal

CERTIFICATE OF ANALYSIS RE12094708 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 ME- ICP61 ME- ICP61 ME-ICP61 ME- ICP61 ME- ICP61 ME-ICP61 ME- ICP61 ME-ICP61 ME- ICP61 ME- ICP61 Method К La Mg Ni P Pb S Sb Sc Sr Th Ti Mn Mo Na Analyte % % % % % Units ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Sample Description LOR 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 1 1 20 0.01 12ATP001 0.24 40 0.01 25 22 0.24 1 690 156 1.44 45 4 730 20 0.42 12ATP002 0.86 30 0.01 26 11 0.23 4 410 495 4.59 22 4 313 20 0.09 12ATP003 3.72 20 377 2 0.05 290 81 0.89 18 3 35 <20 0.13 0.37 <1 12ATP004 1.32 10 0.05 74 21 0.03 2 260 107 1.08 9 3 161 <20 0.11 12ATP005 0.53 12 90 2 <20 <10 0.13 106 24 0.05 >10000 >10.0 3200 8 0.03 12ATP006 2.84 <10 0.04 63 14 3.59 2 190 104 3.42 21 <1 252 <20 0.04 12ATP007 1.15 20 0.07 83 37 0.03 <1 130 43 3.50 193 2 30 <20 0.16

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

Project: Regal

ппега									
Nineral									CERTIFICATE OF ANALYSIS RE12094708
ample Description	Method Analyte Units LOR	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME- ICP61 Zn ppm 2	Ag- OC62 Ag ppm 1	Cu- OC62 Cu % 0.001	Pb-OC62 Pb % 0.001
2ATP001 2ATP002 2ATP003 2ATP004 2ATP005		<10 <10 <10 <10 10	<10 <10 <10 <10 <10	58 22 23 30 46	50 10 20 10 10	4 929 43 41 1085	425	1.630	2.54
2ATP006 2ATP007		<10 <10	<10 <10	6 19	10 20	15 268		1.195	

Appendix 4

Sequential (Cu) Leach Data For Historical Drill Core

Hole ID	From	То	From	То	Interval	Cu(As)	Cu(CN)	Cu(As+CN)	Cu(T)	Recovery
	(ft)	(ft)	(m)	(m)	(m)	(%)	(%)	`(%)	(%)	(%)
BB-2	40	50	12.20	15.24	3.05	0.05	0.01	0.06	0.47	11.7%
BB-2	50	60	15.24	18.29	3.05	0.06	0.37	0.43	0.48	89.6%
BB-2	60	70	18.29	21.34	3.05	0.05	0.43	0.48	0.50	96.0%
BB-2	70	80	21.34	24.39	3.05	0.11	0.51	0.62	0.66	93.9%
BB-2	80	90	24.39	27.44	3.05	0.13	0.62	0.75	0.83	90.4%
BB-2	90	100	27.44	30.49	3.05	0.08	0.32	0.40	0.45	88.9%
BB-2	100	110	30.49	33.54	3.05	0.04	0.18	0.22	0.25	88.0%
BB-2	110	120	33.54	36.59	3.05	0.03	0.09	0.12	0.14	85.7%
BB-2	120	130	36.59	39.63	3.05	0.11	0.28	0.39	0.42	92.9%
BB-2	130	140	39.63	42.68	3.05	0.06	0.20	0.26	0.28	92.9%
BB-3	14	20	4.27	6.10	1.83	0.01	0.03	0.04	0.04	100.0%
BB-3	20	30	6.10	9.15	3.05	0.03	0.11	0.14	0.16	87.5%
BB-3	30	40	9.15	12.20	3.05	0.06	0.19	0.25	0.26	96.2%
BB-3	40	50	12.20	15.24	3.05	0.04	0.13	0.17	0.18	94.4%
BB-3	50	60	15.24	18.29	3.05	0.08	0.45	0.53	0.57	93.0%
BB-3	60	70	18.29	21.34	3.05	0.05	0.15	0.20	0.18	111.1%
BB-3	70	80	21.34	24.39	3.05	0.04	0.23	0.27	0.30	90.0%
BB-3	80	90	24.39	27.44	3.05	0.05	0.30	0.35	0.39	89.7%
00 0	600	640	100.00	105.00	2.05	0.04	0.00	0.40	0.40	100.0%
BB-3 BB-3	600 610	610 620	182.93 185.98	185.98 189.02	3.05 3.05	0.04 0.11	0.09 0.23	0.13 0.34	0.13	100.0% 97.1%
BB-3 BB-3	610	620	185.98	189.02	3.05	0.11	0.23	0.34	0.35	97.1%
BB-3	630	640	192.07	192.07	3.05	0.11	0.22	0.56	0.59	94.9%
BB-3	640	650	192.07	195.12	3.05	0.14	0.42	0.32	0.39	74.4%
BB-3	650	660	198.17	201.22	3.05	0.03	0.23	0.08	0.43	27.6%
BB-3	660	670	201.22	201.22	3.05	0.01	0.05	0.07	0.19	36.8%
BB-3	670	680	201.22	207.32	3.05	0.02	0.03	0.29	0.31	93.5%
BB-3	680	690	207.32	210.37	3.05	0.07	0.26	0.33	0.34	97.1%
BB-3	690	700	210.37	213.41	3.05	0.06	0.20	0.27	0.28	96.4%
BB-3	700	710	213.41	216.46	3.05	0.05	0.20	0.25	0.26	96.2%
BB-3	710	720	216.46	219.51	3.05	0.09	0.18	0.27	0.27	100.0%
BB-4	13	20	3.90	6.10	2.20	0.08	0.29	0.37	0.39	94.9%
BB-4	20	30	6.10	9.15	3.05	0.13	0.56	0.69	0.76	90.8%
BB-4	30	40	9.15	12.20	3.05	0.08	0.25	0.33	0.34	97.1%
BB-4	40	50	12.20	15.24	3.05	0.06	0.16	0.22	0.22	100.0%
BB-4	50	60	15.24	18.29	3.05	0.11	0.42	0.53	0.62	85.5%
BB-4	60	70	18.29	21.34	3.05	0.15	0.39	0.54	0.60	90.0%
BB-4	70	80	21.34	24.39	3.05	0.06	0.13	0.19	0.21	90.5%
BB-4	80	90	24.39	27.44	3.05	0.04	0.21	0.25	0.27	92.6%
BB-4	90	100	27.44	30.49	3.05	0.10	0.52	0.62	0.67	92.5%
BB-4	100	110	30.49	33.54	3.05	0.23	1.10	1.33	1.44	92.4%
BB-4	110	120	33.54	36.59	3.05	0.08	0.23	0.31	0.36	86.1%
BB-4 BB-4	120	130	36.59	39.63	3.05	0.04	0.07	0.11	0.12	91.7%
BB-4 BB-4	130 140	140 150	39.63 42.68	42.68 45.73	3.05 3.05	0.09	0.39 0.27	0.48 0.37	0.47	102.1% 90.2%
BB-4 BB-4	140	160	42.68	45.73	3.05	0.10	0.27	0.43	0.41	90.2%
BB-4 BB-4	160	170	45.73	48.78 51.83	3.05	0.10	0.33	0.43	0.46	93.5%
BB-4 BB-4	170	180	51.83	54.88	3.05	0.05	0.15	0.20	0.23	96.6%
BB-4 BB-4	180	190	54.88	57.93	3.05	0.10	0.18	0.28	0.29	96.7%
BB-4 BB-4	190	200	57.93	60.98	3.05	0.03	0.20	0.06	0.05	120.0%
BB-6	20	30	6.10	9.15	3.05	0.09	0.41	0.50	0.58	86.2%
BB-6	30	40	9.15	12.20	3.05	0.04	0.15	0.19	0.21	90.5%
BB-6	40	50	12.20	15.24	3.05	0.03	0.10	0.13	0.13	100.0%
BB-6	50	60	15.24	18.29	3.05	0.08	0.35	0.43	0.46	93.5%
BB-6	60	70	18.29	21.34	3.05	0.07	0.22	0.29	0.32	90.6%
BB-6	70	80	21.34	24.39	3.05	0.04	0.17	0.21	0.26	80.8%
BB-6	80	90	24.39	27.44	3.05	0.06	0.40	0.46	0.54	85.2%
BB-6	90	100	27.44	30.49	3.05	0.01	0.14	0.15	0.17	85.3%
BB-6	100	110	30.49	33.54	3.05	0.02	0.26	0.28	0.57	49.1%

Hole ID	From	То	From	То	Interval	Cu(As)	Cu(CN)	Cu(As+CN)	Cu(T)	Recovery
	(ft)	(ft)	(m)	(m)	(m)	(%)	(%)	`(%)	(%)	(%)
BB-6	110	120	33.54	36.59	3.05	0.03	0.10	0.13	0.15	86.7%
BB-6	300	310	91.46	94.51	3.05	0.03	0.29	0.32	0.39	82.1%
BB-6	310	320	94.51	97.56	3.05	0.02	0.18	0.20	0.24	83.3%
BB-6	320	330	97.56	100.61	3.05	0.03	0.30	0.33	0.38	86.8%
BB-6	330	340	100.61	103.66	3.05	0.02	0.18	0.20	0.28	71.4%
BB-6	340	350	103.66	106.71	3.05	0.02	0.52	0.54	0.65	83.1%
BB-6	350	360	106.71	109.76	3.05	0.01	0.08	0.09	0.12	75.0%
BB-6	360	370	109.76	112.80	3.05	0.55	4.22	4.77	4.68	101.9%
BB-6	370	380	112.80	115.85	3.05	0.07	0.39	0.46	0.49	93.9%
BB-6	380	390	115.85	118.90	3.05	0.08	0.86	0.94	1.03	91.3%
BB-6	390	400	118.90	121.95	3.05	0.09	0.92	1.01	1.13	89.4%
BB-6	400	410	121.95	125.00	3.05	0.06	0.88	0.94	1.17	80.3%
BB-6	410	420	125.00	128.05	3.05	0.05	0.53	0.58	0.76	76.3%
BB-6	420	430	128.05	131.10	3.05	0.04	0.40	0.44	0.53	83.0%
BB-6	430	440	131.10	134.15	3.05	0.07	0.55	0.62	0.76	81.6%
BB-6	440	450	134.15	137.20	3.05	0.19	1.35	1.54	1.76	87.5%
BB-6	450	460	137.20	140.24	3.05	0.02	0.14	0.16	0.22	72.7%
BB-6	460	470	140.24	143.29	3.05	0.04	0.14	0.18	0.25	72.0%
BB-6	470	480	143.29	146.34	3.05	0.06	0.19	0.25	0.32	78.1%
BB-6	480	490	146.34	149.39	3.05	0.09	0.27	0.36	0.43	83.7%

Appendix 5

Estimated Budget For Recommended Work At Sunnyside Project

Estimated Budget For Recommended Work At The Sunnyside Project.

		Unit Cost	Total Cost
PHASE 1			
Wages			
	Project Management/Supervision	20 days @ ~\$750/day	\$15,000
	Soil Samplers	4 x 20 days @ ~\$400/day	\$32,000
Geophysica	l Contractor		
	Contractor	~10 line-km @ est'd \$20,000/km	\$200,000
Assays			
	soil sample geochemistry	1000 samples @ \$45.00/sample	\$45,000
Misc.			
	miscelaneous costs		\$8,000
	Sub-total		\$300,000
PHASE 2			
PHASE 2 Wages			
	Project Management/Supervision	60 days @ ~\$750/day	\$45,000
	Project Management/Supervision Geologist and Geotech	60 days @ ~\$750/day 60 days @ ~\$900/day	
	Geologist and Geotech		
Wages	Geologist and Geotech		\$54,000
Wages	Geologist and Geotech	60 days @ ~\$900/day	\$54,000
Wages Drill Contra	Geologist and Geotech	60 days @ ~\$900/day	\$54,000 \$2,000,000
Wages Drill Contra	Geologist and Geotech ctor	60 days @ ~\$900/day ~20,000feet @ est'd \$100/ft	\$54,000 \$2,000,000
Wages Drill Contra Assays	Geologist and Geotech ctor	60 days @ ~\$900/day ~20,000feet @ est'd \$100/ft	\$45,000 \$54,000 \$2,000,000 \$90,000 \$11,000

Total

\$2,500,000